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Amplified optomechanics in a unidirectional ring cavity
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We investigate optomechanical forces on a nearly lossless scatterer, such as an atom pumped far off-resonance or
a micromirror, inside an optical ring cavity. Our model introduces two additional features to the cavity: an
isolator is used to prevent circulation and resonant enhancement of the pump laser field and thus to avoid
saturation of or damage to the scatterer, and an optical amplifier is used to enhance the effective Q-factor of the
counterpropagating mode and thus to increase the velocity-dependent forces by amplifying the back-scattered
light. We calculate friction forces, momentum diffusion, and steady-state temperatures to demonstrate the
advantages of the proposed setup.
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1. Introduction and motivation

Free-space laser cooling [1] has proven to be remark-
ably successful in cooling simple atomic systems,
especially alkali atoms [2]. Relying on the availability
of a (quasi-)closed two-level [3] or multi-level [4,5]
system, however, only occasional successes were had
with more complicated systems, such as molecules
[6,7]. An alternative to such schemes is cavity–
mediated cooling [8–11], where the interaction of a
polarisable particle with a cavity field leads to a
Sisyphus-type mechanism [12] that can cool the motion
of the particle; no specific energy level scheme is
required for this mechanism to operate. Much of this
work has been focused on standing-wave (Fabry–
Pérot) cavities, where high Q-factors can be achieved
experimentally to significantly enhance optomechani-
cal forces. However, in the limit of strong scatterers,
friction forces in standing-wave cavities become
increasingly position-dependent [13], which limits the
overall, averaged cooling efficiency. This can be
overcome by using ring cavities [14–21] where the
translational symmetry guarantees position-
independent forces. On the other hand, ring cavities
are usually much larger and of lower Q-factor than
their standing-wave counterparts. Using a gain
medium inside a ring cavity has been proposed
[22,23] to offset these losses, allowing one to effectively
‘convert’ a low-Q cavity into a high-Q one, and thus to
increase the effective optomechanical interaction by
orders of magnitude. This same concept has also been

raised in connection with using optical parametric

amplifiers in standard optomechanical systems [24].

Research is also being conducted into using nonlinear

media inside cavities [25] as a tool to control the

dynamics of a micromechanical oscillator. Another

application of ring cavities is in the investigation of

collective atomic recoil lasing (CARL) [26], which

exploits the spontaneous self-organisation of an atomic

ensemble within a ring cavity, induced by a strong

pump beam, to amplify a probe beam through

Doppler-shifted reflection of the pump. The gain

medium is in this case the atomic ensemble itself.
Here, we investigate a different system that shares

several features with the above mechanisms. In partic-

ular, we consider a particle inside a ring cavity that

includes a gain medium, spatially separated from the

particle. An isolator is also included in the ring cavity,

in such a way as to prevent the pump beam from

circulating in the cavity and being amplified; this

ensures that the intensity of the field surrounding the

particle is always low and thereby circumvents any

problems caused by atomic saturation or mirror

burning. The Doppler-shifted reflection of the pump

from the particle is, on the other hand, allowed to

circulate, and its amplification in turn enhances the

velocity-dependent forces acting on the particle.
In such a situation, one is able to take advantage of

properties inherent to the ring cavity system, such as

the fact that the forces acting on the particle do not

exhibit any sub-wavelength spatial modulation; this is
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due to the translational symmetry present in the system
[14]. Moreover, modest amplification allows one to use
optical fibres to form the ring cavity, opening the door
towards increasing the optical length of such cavities.
The optomechanical force is, as we will see and in the
parameter domain of interest, linearly dependent on
the cavity length; lengthening the cavity thus provides
further enhancement of the interaction.

This paper is structured as follows. We shall first
introduce the physical model, which we proceed to
solve using the transfer matrix method (TMM) [27] to
obtain the friction force and momentum diffusion
acting on the particle. In the good-cavity limit, Section
2.1, simple expressions for these quantities can be
obtained, yielding further insight into the system and
allowing us to draw some parallels with traditional
cavity cooling. In this limit, our model becomes
equivalent to one based on a standard master equation
approach [14] as outlined in Section 2.2. Realistic
numerical values for the various parameters are then
used in Section 3 to explore the efficiency and limits of
the cooling mechanism. Finally, we will conclude by
mentioning some possible extensions to the scheme.

2. General expressions and equilibrium behaviour

The mathematical model of the ring cavity system,
schematically drawn in Figure 1(a), is shown in
Figure 1(b). A particle, characterised by its polarisa-
bility �, is in a ring cavity of round-trip length L. C1,3

are the couplers, between which the particle lies, that
terminate the fibre-based cavity, and C2 is the input
coupler that injects a pump beam with wavenumber k0
into one of the travelling modes of the cavity. The
couplers Ci (i¼ 1, 2, 3) have (amplitude) reflection and
transmission coefficients ri and ti ¼ ri þ 1, respectively,
and are associated with corresponding noise modes Êi.
Similarly, the particle itself couples a noise mode Ê into
the system with an amplitude � depending on �.

The length scales l1 4 lA 4 l2 4 l3 4 0 are introduced

for clarity, but their values are not important for the

results of this paper. The cavity contains an optical

isolator which prevents the pumped mode from circu-

lating inside the cavity. This avoids resonant enhance-

ment of the pumped mode in the cavity and thus avoids

saturating the particle. The backscattered counter-

propagating mode, on the other hand, is amplified on

every round trip by means of an optical amplifier with

gain � � 1. The amplifier also introduces a noise mode

ÊA with an amplitude �A which depends on �. The

TMM [27] is used to self-consistently solve for the two

counterpropagating field amplitudes at every point in

the cavity in the presence of the pump field and the

noise modes. Note that in the limit where the amplifier

is compensating for the ring cavity losses, the amplifier

noise is also comparable to the loss-induced noise and

must therefore be taken into account in our model.
Using the notation in Figure 1(a) we can relate the

expectation values of the amplitudes of the two input

and two scattered field modes interacting with the

particle in a one-dimensional scheme, AðkÞ ¼ hÂðkÞi,

BðkÞ ¼ hB̂ðkÞi, CðkÞ ¼ hĈðkÞi, and DðkÞ ¼ hD̂ðkÞi, to

BinðkÞ ¼ hB̂inðkÞi by means of the relations

B ¼ r2t3 expðik0l2ÞBin, C ¼ �A, and
A

B

� �
¼ M̂

C

D

� �
,

ð1Þ

where �ðkÞ ¼ t1t2t3� expðikLÞ is the factor multiplied to

the field amplitude every round trip. In the preceding

equations, as well as in the following, we do not write

the index k for simplicity of presentation. The opera-

tors ÂðkÞ, etc., denote the annihilation operators of the

various field modes. The three equations Equations (1)

have a readily apparent physical significance –

respectively, they correspond to: the propagation of

B̂in to reach the particle; the feeding back of Â to Ĉ

through the ring cavity; and the usual transfer matrix

relation for a particle interacting with the four fields

(b)(a)

Figure 1. (a) Physical schematic of a polarisable particle in a unidirectional ring cavity, showing the input field B̂in. (b)
Equivalent ‘transfer matrix’-style (unfolded) model; the particle is drawn on both sides of this schematic to illustrate the recursive
nature of the cavity. The various components are defined in Section 2.
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surrounding it. The first two of these relations are
substituted into the third, which subsequently simpli-
fies to

A

Bin

� �
¼

1 0

0 r2t3 expðik0l2Þ

� �
�M̂

� 0

0 0

� �� ��1
M̂

0

D

� �
:

ð2Þ

If we assume far off-resonant operation, i.e. @�=@k ¼ 0,
the velocity-dependent transfer matrix M̂ can be
written as [27,28]

1þ i� i� � 2i�
v

c
þ 2ik0�

v

c
@k

�i� � 2i�
v

c
þ 2ik0�

v

c
@k 1� i�

2
64

3
75:

ð3Þ

The notation @k � @=@k is used throughout; note that
this partial derivative acts not only on �(k) but also on
the field mode amplitudes it precedes. Equation (2) can
be inverted in closed form to first order in v/c, similarly
to [28], and can thus be used to find A ¼
½2�0S=ð�hk0Þ�

1=2
Ð
AðkÞdk, B ¼ ½2�0S=ð�hk0Þ�

1=2
Ð
BðkÞdk,

C ¼ ½2�0S=ð�hk0Þ�
1=2
Ð
CðkÞdk, and D ¼ ½2�0S=ð�hk0Þ�

1=2
�Ð

DðkÞdk, where the normalisation is with respect to the
pump beam mode area S and where a monochromatic
pump is assumed: BinðkÞ ¼ B0�ðk� k0Þ. Here, jAj2,
jBj2, etc., are the photon currents in units of photons
per second. The expectation value of the force acting
on the particle is then given by [27]:

Ffull ¼ �hk0 Aj j
2
þ Bj j

2
� Cj j

2
� Dj j2

� �
: ð4Þ

The values of A, B, etc., from the solution of
Equation (2) are then substituted into Equation (4),
which we evaluate to first order in v/c, in terms of
B0. After some algebra, we obtain the first main
result of this paper – the friction force acting on the
particle:

F ¼ �8�hk20
v

c
Re

1� ��ð Þ�Re �f g þ i��� �j j2

1� �� i�

@�

@k

� 	

�
jr2t3B0j

2

j1� �� i�j2
: ð5Þ

By extending the TMM appropriately, one can keep
track of the various noise modes interacting with the
system. Equations (1) then become

Â ¼
i�

1� i�
B̂þ

1

1� i�
Ĉþ �Ê, ð6aÞ

B̂ ¼ r2t3 expðik0l2ÞB̂in þ t2t3 expðik0lAÞÊisolator

þ r3 expðik0l3ÞÊ
0
3, ð6bÞ

Ĉ ¼ �Âþ r1 exp½ik0ðL� l1Þ�Ê1 þ t1r2�

� exp½ik0ðL� l2Þ�Ê2 þ t1t2r3� exp½ik0ðL� l3Þ�Ê3

þ t1�A exp½ik0ðL� lAÞ�ÊA, ð6cÞ

and

D̂ ¼
1

1� i�
B̂þ

i�

1� i�
Ĉþ �Ê, ð6dÞ

with � ¼ ½1�
�
1þ j�j

�
=j1� i�j2�1=2 [27] and �A ¼

ð1� 1=j�j2Þ1=2 [29]. These equations can be solved
simultaneously for Â, B̂, Ĉ, and D̂, and the solution
used to evaluate the momentum diffusion constant, D,
defined as the two-time autocorrelation function of the
force operator, to obtain

D �ðt� t0Þ

¼ 2�0S �hk0 ÂðtÞ, Âyðt0Þ
h i

Aj j
2
þ B̂ðtÞ, B̂yðt0Þ
h i

Bj j
2




þ ĈðtÞ, Ĉyðt0Þ
h i

Cj j
2
þ D̂ðtÞ, D̂yðt0Þ
h i

Dj j2

þ 2Re ÂðtÞ, B̂yðt0Þ
h i

A
�
B � ÂðtÞ, Ĉyðt0Þ

h i
A
�
C

n

� ÂðtÞ, D̂yðt0Þ
h i

A
�
D � B̂ðtÞ, Ĉyðt0Þ

h i
B
�
C

� B̂ðtÞ, D̂yðt0Þ
h i

B
�
D þ ĈðtÞ, D̂yðt0Þ

h i
C
�
D

o�
,

ð7Þ

keeping in mind that most of the noise modes, as well
as B̂in, obey the commutation relation

�
ÊðtÞ, Êyðt0Þ



¼

�hk0=ð2�0SÞ �ðt� t0Þ. The sole exception is the noise
introduced by the amplifier, ÊA, for which

�
ÊAðtÞ,

ÊyAðt
0Þ


¼ ��hk0=ð2�0SÞ �ðt� t0Þ; this is due to the model

of the amplifier as a negative temperature heat-bath,
whereby the creation and annihilation operators effec-
tively switch rôles. Further discussion of this model can
be found in [29] (Section 7.2). All the noise modes are
independent from one another and from B̂in, which
simplifies the expressions considerably.

Finally, the fluctuation–dissipation theorem [3] can
be used in conjunction with Equations (5) and (7) to
estimate the equilibrium temperature that the motion
of the particle will tend to:

kBTA ¼
D

�F=v
, ð8Þ

where kB is the Boltzmann constant.

2.1. The good-cavity limit as a simplified case

Before discussing the result of Equations (5) and (7), cf.
Section 3, we shall make several approximations to
obtain a transparent set of equations to briefly explore
the equilibrium behaviour of the particle and to
compare with a standard master equation approach.
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In particular, � is assumed to be real, which is
tantamount to assuming that the particle suffers no
optical absorption, i.e. if it is an atom, that it is
pumped far off-resonance. Moreover, the cavity is
assumed to be very good (jt1,2,3j ! 1) and thus no gain
medium is introduced in the cavity (�¼ 1). With these
simplifications, Equation (5) reduces to

F � �8�hk20
v

c

�2

1� �j j4
Re 1� ��ð Þ

2@�

@k

� 	
jr2B0j

2

� 16�hk20�
2v

�DC

D2
C þ �

2
� �2 1� jr2B0j

2: ð9Þ

In the preceding equations, DC is the detuning of the
pump from cavity resonance, � is the HWHM cavity
linewidth,

� ¼
1

�

1� t1t2t3j j�

ð t1t2t3j j�Þ1=2
, ð10Þ

and �¼L/c is the round-trip time. Using the same
approximations as for Equation (9), we also obtain the
diffusion constant

D � 8�h2k20�
2 �

D2
C þ �

2

1

�
jr2B0j

2: ð11Þ

Note that �¼ 1 here and therefore ÊA does not
contribute to the diffusion constant. Equations (9)
and (11) hold for the case where DC=� is not too large.
The cavity can be fully described by means of � and the
finesse F ¼ pc=ð2L�Þ. Let us now set DC ¼ �� in
Equations (9) and (11), whereby

F¼�
8

p
�hk20�

2v
F

�
jr2B0j

2, and D¼
8

p
�h2k20�

2F jr2B0j
2:

ð12Þ

These two expressions have a readily-apparent physical
significance; at a constant finesse, decreasing the cavity
linewidth by making the cavity longer is equivalent to
increasing the retardation effects that underlie this
cooling mechanism [30], leading to a stronger friction
force. At the same time, this has no effect on the
intracavity field strength and therefore does not affect
the diffusion. On the other hand, improving the cavity
finesse by reducing losses at the couplers increases the
intracavity intensity, thereby increasing both the fric-
tion force and the momentum diffusion.

Using Equation (8) together with Equations (9)
and (11) we obtain, for DC 5 0,

TA �
�h

kB

DCj j

�
þ

�

DCj j

� �
�

2
�

�h

kB
�, ð13Þ

with the minimum temperature occurring at DC ¼ ��.
One notes that this expression is identical to the
corresponding one for standard cavity-mediated

cooling [12], and can be interpreted in a simi-

lar light as the Doppler temperature, albeit with the
energy dissipation process shifted from the decay

of the atomic excited state to the decay of the
cavity field.

A particular feature to note in all the preceding

expressions is that they are not spatial averages over
the position of the particle, but they do not depend

on this position either. As a result of this, the force,
momentum diffusion and equilibrium temperature do

not in any way depend on the position of the
particle along the cavity field in a 1D model. The

issue of sub-wavelength modulation of the friction
force is a major limitation of cooling methods based
on intracavity standing fields, in particular mirror-

mediated cooling [28] and cavity-mediated
cooling [13].

2.2. Comparison with a semiclassical model

In the good-cavity limit and without gain our TMM

model is equivalent to a standard master equation
approach with the Hamiltonian

Ĥ ¼ ��hDa	̂
þ	̂� � �hDCâ

y

CâC

þ �hg âyC	̂
� expðik0xÞ þ 	̂

þâC expð�ik0xÞ

 �

þ �hg a�P	̂
� expð�ik0xÞ þ 	̂

þaP expðik0xÞ
� �

, ð14Þ

and the Liouvillian terms

L
̂ ¼ �G 	̂þ	̂�
̂� 2	̂�
̂	̂þ þ 
̂	̂þ	̂�
� �

� � âyCâC
̂� 2âC
̂â
y

C þ 
̂â
y

CâC


 �
, ð15Þ

as adapted from [14] and modified for a unidirectional

cavity where only the unpumped mode is allowed to
circulate. Here, 
̂ is the density matrix of the system, g is
the atom–field coupling strength, âC is the annihilation

operator of the cavity field, 	̂þ is the atomic dipole
raising operator, Da is the detuning from atomic

resonance, G is the atomic upper state HWHM
linewidth, and x is the coordinate of the atom inside

the cavity. The pump field is assumed to be unperturbed
by its interaction with the atom, and in the above is

replaced by a c-number, aP. Calculating the friction
force form this model leads again to Equation (9), thus

confirming our TMM results by a more standard
technique. The advantage of the TMM approach lies in

the simplicity and generality of expressions such as
Equation (4), and the ease with which more optical

elements can be introduced into the system. As shown
above, Equation (7), the momentum diffusion coeffi-

cient is easily calculated from the TMM.
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3. Numerical results and discussion

We can use the conversion factor jB0j
2 ¼ P=ð�hk0cÞ,

where P is the power of the input beam, to evaluate the

above equations [notably Equations (5) and (7)]

numerically in a physically meaningful way.

Specifically, the particle is now assumed to be a

(two–level) 85Rb atom, pumped �10G from D2 reso-

nance, where G ¼ 2p� 3:03MHz is the HWHM line-

width of this same transition at a wavelength of ca.

780 nm; because the detuning is much larger than the

linewidth, we simplify the calculations by setting

@�=@! ¼ 0. The beam waist where the particle interacts

with the field is taken to be 10 mm. With the parameters

in Figure 2, the power is reduced by a factor of

1=jt1t2t3j
2 ¼ 4:04 with each round-trip, in the presence

of no gain in the amplifier. We shall compare this case

to the low-gain case; the gain of the amplifier we

consider is constrained to be small enough that

j�j2 ¼ jt1t2t3�j
2 5 1. Under these conditions, there is

no exponential build-up of intensity inside the cavity

and the system is stable. A cavity with a large enough

gain that j�j2 4 1 would effectively be a laser cavity.

Such a system would have no stable state in our model,

since we assume that the gain medium is not depleted,

and will therefore not be considered further in this

paper.
Figure 2 shows the friction force acting on the

particle, and Figure 3 the equilibrium temperature, as
the length of the cavity is tuned on the scale of one
wavelength. In each of these two figures two cases are
shown, one representing no gain in the amplifier
(�¼ 1) and one representing a low-gain amplifier

(�¼ 1.75); note that in both cases the condition
j�j2 5 1 is satisfied.

In order to provide a fair comparison between these
two cases, we choose the pump amplitude Bin such that
the saturation of the particle is the same in the two
cases. This ensures that any difference in cooling
performance is not due to a simple increase in intensity.
Since the TMM as presented here is based on a linear
model of the particle, our results presented above are
only valid in the limit of saturation parameter much
smaller than 1. Thus, as a basis for the numerical
comparisons between the two different cases, we choose
to set the saturation parameter to 0.1. Figure 2 shows
that under these conditions the amplified system leads
to a significant, approximately 25-fold, enhancement of
the maximum friction force. This can therefore be
attributed unambiguously to the effective enhancement
of the cavity Q-factor by the amplifier.

However, for the parameters considered here, in
particular for small particle polarisability � and for
j�j2 5 1, the counterpropagating mode intensity is
much smaller than that of the pumped mode, even if
the former is amplified. Thus, the intracavity field is
always dominated by the pump beam, whereas the
friction force is mostly dependent on the Doppler-
shifted reflection of the pump from the particle.
Specifically, for the parameters used above we find
that the total field intensity changes by less than 1%
when the gain is increased from 1 to 1.75. Hence,
similar results to those of Figure 2 are obtained even
without pump normalisation.

The steady-state temperature, obtained by the ratio
of diffusion and friction, Equation (8), is shown in
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Figure 3 for the same parameters as above. We observe

that the broader resonance in the friction as a function

of cavity detuning (i.e. of cavity length), shown in

Figure 2, also leads to a wider range of lower
temperatures compared to the amplified case.

However, as expected, within the narrower resonance

of the amplified system where the friction is signifi-

cantly enhanced, the stationary temperature is also
significantly reduced. We see that while the maximum

friction force is increased by a factor of 25.4, the lowest

achievable temperature is decreased by a factor of 19.9

when switching from �¼ 1 to �¼ 1.75. While the
overall cavity intensity is dominated by the pump field,

and is therefore hardly affected by the amplifier, the

diffusion is actually dominated by the interaction of

the weak counterpropagating field with the pump field.
This can be seen most clearly by the strong detuning

dependence of the analytic expression for D in the

good-cavity limit, Equation (11). As a consequence,
the lowest achievable temperature is improved by a

slightly smaller factor than the maximum friction

coefficient. This is consistent with the idea that the

amplifier not only increases the cavity lifetime, but also
adds a small amount of additional noise into the

system. Nevertheless, a strong enhancement of the

cooling efficiency is observed in the presence of

the amplifier.

4. Conclusions and outlook

We have presented a modified model for optomecha-

nics inside ring cavities where only one of the counter-

propagating fields in the cavity is allowed to circulate.
By pumping the other mode and using a gain medium

inside the cavity, one can greatly improve the

optomechanical force acting on a polarisable particle

inside the cavity, regardless of its energy level structure,
without bringing about ill effects such as saturation or

mirror burning. The conceptual introduction of a gain

medium inside the cavity brings about several inter-

esting possibilities. We have considered using this gain
medium to offset losses inherent in the cavity, thereby

improving its Q-factor significantly. This renders

possible the use of optical fibres to build the cavity.
One could also envisage using doped fibre amplifiers

[31] to provide a distributed gain medium along the

cavity. In this paper, we only considered low-gain

media, such that the total losses in the cavity still
exceeded the gain. Higher gains could be used to

explore and exploit novel phenomena such as opto-

mechanical interactions of weakly reflective micro-

mirrors inside laser cavities and will be the subject of
future work.
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