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One can enhance second-harmonic generation in angle-tuned crystals by focusing the fundamental to an ellip-
tical waist in the crystal. We present a general analysis for type I phase-matched uniaxial and biaxial crys-
tals that will find particular application in the generation of harmonics from diode lasers. © 1997 Optical
Society of America [S0740-3224(97)01308-8]
1. INTRODUCTION
The optimal focusing arrangement for second-harmonic
generation is a compromise between the focal intensity
and the depth of focus (confocal parameter) within the
crystal. In the absence of birefringence (noncritical
phasematching), the fundamental beam should have a
circular cross section and a confocal parameter of 0.35 of
the crystal’s length.1

Angle-tuned (critical) phase matching causes the cylin-
drical symmetry of harmonic generation to be lost, and el-
liptical (or anamorphic) focusing into the crystal has been
shown to be advantageous. In this paper we present a
theoretical analysis of type I phase matching and con-
clude that the harmonic power can be enhanced by as
much as 30%. The less common type II phase matching,
in which the fundamental is split between ordinary and
extraordinary polarizations, requires a rather different
analysis if these components are collinear2; a proposed
noncollinear scheme is, however, equivalent to the type I
arrangement considered here.3

Elliptical focusing will be especially useful for the fre-
quency doubling of diode lasers,4 for not only is the beam
profile usually elliptical but any enhancement cavities are
likely to be astigmatic. To match such a geometry effi-
ciently, or at least to be allowed a degree of insensitivity,
will be useful indeed. Such considerations will be yet
more important when frequency-doubling or -mixing
stages are cascaded, as with frequency tripling5 and
quadrupling.6,7 Our results will also be of particular rel-
evance to second-harmonic generation by use of Brewster-
angled crystals that render a circular incident beam ellip-
tical. For high-power lasers as well, if the optimal
circular focus leads to crystal damage8 or to thermally in-
duced dephasing, elliptical focusing may provide a solu-
tion.

Cylindrical focusing was first considered for second-
harmonic generation by Volosov and Nilov,9 Volosov,10
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and Chmela,11 but true elliptical arrangements were not
addressed until Librecht and Simons12 considered a spe-
cific example and analyzed the asymptotic behavior. El-
liptical geometries had in the meantime been applied to
parametric oscillation by Kuizenga,13 and further analy-
ses followed.14,15 Pure cylindrical focusing has been used
with pulsed Nd:YAG lasers16 and with copper-vapor
lasers,17 for which a limited theoretical analysis has been
presented18 and proposed for the reduction of thermal
dephasing.19 Interest in elliptical focusing has reawoken
with the advent of the diode laser, first with the investi-
gation of a specific example of type II phase matching20

and then with the qualitative matching of an elliptical
beam into an enhancement cavity21; the latter technique
was also partly addressed in conjunction with titanium-
doped sapphire lasers.22,23 Recently Steinbach et al.24

showed excellent agreement between modeled and experi-
mental doubling of a cw argon-ion laser and calculated
some more general results.

This is clearly, then, not the first attempt to treat ellip-
tical focusing in second-harmonic generation. Whereas
previous analyses generally referred to specific experi-
mental situations, however, the treatment presented here
leads to results of general significance as a function of the
usual crystal parameter B, from which the optimal ellip-
tically focused geometries can readily be found and for
which generally applicable recipes are presented. Often,
of course, it may not be experimentally practicable to use
the ideal arrangement, and the conversion efficiency in-
deed appears to be a gentle function of the focusing pa-
rameters. We therefore present curves for nonoptimal
ellipticities from which the best focusing strengths and
expected efficiencies can be derived.

Finally, in various limiting regimes, some physical in-
terpretation of the results is possible. For many nonlin-
ear crystals the birefringence is high enough that an ana-
lytic calculation for the limit of high birefringence is a
1997 Optical Society of America
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good approximation. The treatment given here, which
reduces the calculation to tabulated functions, follows
that of Librecht and Simons,12 although it is appropriate
not only in the extremes of strong and weak focusing but
also in the interesting regime where the conversion effi-
ciency is maximum.

2. THEORY
Second-harmonic generation is most efficient when it is
phase matched; that is, the material dispersion between
the fundamental and the harmonic wavelengths is com-
pensated such that, when the harmonic contributions
from all points within the crystal are added coherently
into the output beam, the maximum intensity is achieved.
For plane waves this requires that the components all
emerge in phase and thus that the refractive indices for
the fundamental and the harmonic be equal. For focused
beams there should be a small mismatch to correct for the
Guoy shift,25 which can be considered to conserve the mo-
mentum of the light beam as it passes through a focus.

Type I phase matching exploits the birefringence of the
nonlinear crystal, which is oriented such that the refrac-
tive index for one polarization at the fundamental wave-
length matches that at the harmonic in the other. If the
refractive indices for the two polarizations are repre-
sented as functions of the angular coordinates by sur-
faces, then phase matching occurs when the ellipsoids
thus formed meet. If these surfaces intersect, the line of
intersection corresponds to the locus of phase-matched
crystal orientations, and rotation normal to this line al-
lows the crystal to be angle tuned, the orientation chosen
being that point on the locus that provides the largest
nonlinear coefficient. Except in the case of noncritical, or
90°, phase matching—which involves bringing the ellip-
soids to a single grazing contact by varying the crystal
temperature—the phase match will be highly sensitive to
rotation away from the line of intersection of the ellip-
soids, causing a narrow angular acceptance for the inci-
dent light, but will be insensitive to rotation along this
line.

The induced field at the harmonic frequency depends
quadratically on that of the fundamental, and the effi-
ciency of second-harmonic generation thus increases as
the input power is focused into a smaller area. If the
constraints of phase matching can be neglected, the opti-
mal focusing arrangement will be a compromise that op-
timizes both the electric-field strength at the focus and
the longitudinal distance over which the focus extends
and occurs when the confocal parameter of the Gaussian
beam is 0.35 of the crystal length. With critical phase
matching, however, only a central longitudinal slice of the
beam falls within the narrow acceptance angle, and for
optimal conversion the focusing must be weakened. The
correspondingly larger focal region can be regarded as
better able to accommodate Poynting-vector walk-off be-
tween the beams. The optimal parameters for a circular
Gaussian beam in any such arrangement are described in
a classic paper by Boyd and Kleinman.1

3. ANALYSIS
Our approach has been to generalize the circular beam
analysis of Boyd and Kleinman,1 using instead an ellipti-
cal, astigmatic form of the Gaussian beam to describe the
fundamental and generated harmonics. We preserve the
original notation of Boyd and Kleinman but have chosen
to present our results in SI units. In extending the treat-
ment to allow the Gaussian beams to have an elliptical
cross section, we have added x and y subscripts where the
elliptical asymmetry renders it necessary. The optic axis
is in the x –z plane.

We start, therefore, with an elliptical Gaussian beam,
propagating with wave number k1 5 2ph1 /l along the
z8 axis, with an electric field given by

E 5 E0

exp~ik1z8!expF2S x82/wx
2

1 1 itx8
1

y82/wy
2

1 1 ity8
D G

@~1 1 itx8!~1 1 ity8!#1/2
,

(1)

where tx8 5 2(z8 2 fx)/k1wx
2 and ty8 5 2(z8 2 fy)/

k1wy
2. The foci in the y –z and x –z planes are found at

z 5 fx and z 5 fy , respectively, thus permitting the beam
to be astigmatic when the foci do not coincide, and the
waist radii or ellipse semiaxes are wx and wy , respec-
tively.

Birefringence in the nonlinear crystal will be character-
ized by the walk-off angle r between the fundamental and
the harmonic. For type I phase matching in negative
uniaxial crystals, where the ordinary (o) and the extraor-
dinary (e) refractive indices at the fundamental and the
harmonic frequencies are given by ho

v , he
v , ho

2v and he
2v ,

the walk-off angle is given by

tan r 5
1 2 ~ho

2v/he
2v!2

cot u 1 tan u~ho
2v/he

2v!2
, (2)

where the phase-matching angle u satisfies

sin2 u 5
~ho

v!22 2 ~ho
2v!22

~he
2v!22 2 ~ho

2v!22
. (3)

Similar expressions apply for positive uniaxial crystals,
with the v and 2v labels interchanged, and the treat-
ment presented here is valid for both. With biaxial
crystals26,27 there are rather too many configurations to
describe here, but one can derive a value for the walk-off
angle r by using

tan r 5
1

k2

d~Dk !

df
(4)

5
1
h

d
df

@hv~f! 2 h2v~f!#, (5)

where f is the angular coordinate in the critical direction,
hv(f) and h2v(f) are the angle-dependent refractive in-
dices at the fundamental and the harmonic frequencies,
respectively, and Dk is the wave-number mismatch,
2k1 2 k2.

We now apply the analysis of Boyd and Kleinman, us-
ing the more general elliptical form of the Gaussian beam.
The fundamental electric field at a given distance into the
crystal is given by Eq. (1) together with a term to allow for
absorption, and the resulting polarization at the har-
monic frequency is found to have a transverse elliptical
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Gaussian dependence. Each slice will thus propagate as
an elliptical Gaussian beam, and all such beams can be
added coherently further downstream; walk-off is in-
cluded by making a shear coordinate transformation.
Our version of the variables used in this treatment is
summarized as follows:

v1, v2, fundamental and harmonic frequencies;
k1, k2, fundamental and harmonic wave numbers;
Dk, wave-number mismatch, 2k1 2 k2;
wx , wy , waist radii (ellipse semiaxes);
bx , by , confocal parameters, wx

2k1, wy
2k1;

l, crystal length;
jx , jy , focusing parameters, l/bx , l/by ;
e, ellipticity, wx /wy ;
m, focus position in the critical (x) direction

5(l 2 2fx)/l when the focus is at z 5 fx ;
D, astigmatic distance between beam waists

52( fx 2 fy)/(k1wy
2);

r, birefringent walk-off angle in the crystal;
b, ratio of walk-off angle to Gaussian-beam

half-angle, 5rwxk1/2.

e is thus the ellipticity of the Gaussian beam waist. Two
dimensionless coordinate systems are used: s and s8 are
angles from the axis in the critical and noncritical planes,
in units of Gaussian half-angle; tx , tx8, ty , and ty8 are
longitudinal dimensions in units of the confocal param-
eter. The remaining variables are essentially un-
changed:

sx , phase mismatch in the critical direction
51/2 bxDk;

s8 5 sx 1 4bs;
K 5 2v1

2deff
2 /pe0c3h1

2h2 ;
P1 , fundamental power;
a1 , absorption coefficient for fundamental;
a2 , absorption coefficient for harmonic;
a 5 a1 2 1/2 a2 ;
a8 5 a1 1 1/2 a2 ;
k 5 1/2 abx .

The relations among the on-axis focal harmonic polar-
ization P0x , the fundamental electric field E0, and the to-
tal fundamental power P1 are given by

P0x 5 e0deff E0
2

5 4P1deff /~ph1cwxwy!, (6)

and the second harmonic intensity S is given in terms of
the field strength E2 by

S 5 1/2 e0h2cuE2u2. (7)

We ultimately reach an expression for the harmonic
power:

P2 5 KP1
2lk1 exp~2a8l !hm , (8)

where all the optimizable parameters are contained
within the term
hm 5
p2

jx

exp ~mal !F 2

p1/2
e E

2`

`

exp~24s2!uHu2dsG , (9)

where

H 5
1

2p E
2jx~12m!

jx~11m! exp~2ktx8!exp~is8tx8!

~1 1 itx8!1/2@1 1 i~e2tx8 1 D!#1/2
dtx8.

(10)

Although we have chosen throughout to refer primarily to
properties in the critical x direction, a similar pair of ex-
pressions results if we work instead with properties in the
y direction and make appropriate changes to our defini-
tions of b, k, m, s8, and e.

hm is a function of the parameters jx , e, b, sx , m, D, l,
and a. The last term characterizes the absorption of the
crystal and may often be assumed to be zero, in which
case the optimal values of m and D are found to be zero
and the dependence of hm on l will disappear. sx repre-
sents the deviation from normal phase matching and will
in practice be optimized by fine adjustment of the crystal
orientation, so only the optimal value of sx need be con-
sidered. The set of parameters necessary for determin-
ing hm is thus reduced to jx , e, and b, and it is convenient
to rewrite b in the form

b 5 B~jx!21/2, (11)

where B is completely defined by the physical properties
of a given crystal through B 5 1/2 r(lk1)1/2. B is thus
the ratio of the walk-off angle to the 1/e amplitude half-
angle of a Gaussian beam whose confocal parameter
equals the crystal length; alternatively, B is A1.39 times
this ratio for a beam that would be the optimum under
noncritical phase matching. The function hm is thus de-
fined by B, jx , and e, where the first parameter describes
the crystal and the others describe the focusing arrange-
ment, which is under our control.

Equation (8) correctly reduces to the result of Boyd and
Kleinman for circular focusing and is consistent with
those of Steinbach et al.24 when there is no absorption
and of Librecht and Simons12 when in addition the focus
is at the crystal center. The formula of Bourzeix et al.23

describes the behavior in the limit e→0 and provides a
reasonable estimate of the efficiency for e,1 but is inap-
propriate at the optimal ellipticity and above and cannot
be used to derive the optimal conditions.

For the numerical calculation we first expand Eqs. (9)
and (10) as a triple integral over s and tx8 (twice, as t and
t8), which allows the s integral to be eliminated and ren-
ders the remaining double integral better behaved. By
making the transformations X 5 t 2 t8 and Y 5 t 1 t8
2 2jxm, we move the range in which the integrated func-
tion is large onto the X 5 0 axis. We then compute hm
numerically, using the amoeba downhill simplex
method28 to maximize the result for specific B as a func-
tion of jx , sx , and e. For the results presented, we have
set the absorption to zero and placed the foci at the center
of the crystal, which makes the calculation slightly easier
and gives the results some general significance.



Freegarde et al. Vol. 14, No. 8 /August 1997 /J. Opt. Soc. Am. B 2013
4. RESULTS AND INTERPRETATION
The maximized values of hm for circular and optimal el-
liptical focusing are shown in Fig. 1 as functions of the
crystal parameter B, and the corresponding focusing pa-
rameters, j for circular and jx and jy for elliptical focus-
ing, are shown in Fig. 2. The optimal ellipticity is indi-
cated by the heavy solid curves of Figs. 3 and 4, which
show the values of hm and, respectively, jy and jx as func-
tions of both B and e and permit the performance of ge-
ometries with nonoptimal ellipticity to be found. The ob-
served improvement in conversion efficiency, approaching
a factor of 1.3,21,24,29 is indeed predicted for elliptical fo-
cusing in crystals with appreciable birefringence and cor-
responds as expected to stronger focusing in the noncriti-
cal direction and to a broader focus in the critical
direction. In such cases the conversion efficiency is little
affected by a further increase in ellipticity, and it is found
that wy remains fixed near its optimal value and thus
that jy 5 e2jx remains constant, as described by Stein-
bach et al.24; for suboptimal ellipticities, however, jy
should decrease to meet the results of Boyd and Kleinman
at e 5 1.

Our results can be compared with those for parametric
gain,13 which corresponds to generation of the harmonic
in a particular Gaussian mode. Our cases of circular and
elliptical focusing are given, respectively, by Kuizenga’s
configurations13 for circular and elliptical probe beams
with elliptical signal and idler, and a12m corresponds to

Fig. 1. Optimized conversion efficiency parameter hm for circu-
lar and elliptical Gaussian beams as a function of the crystal pa-
rameter B.

Fig. 2. Optimal focusing parameters jx and jy for elliptical
Gaussian beams and j for circular focusing.
the reciprocal of our ellipticity e. Kuizenga’s results,
which closely follow ours, also indicate the ellipticity of
the harmonic beam 1/(a12Aax). At high B, the paramet-
ric gain calculations indicate an optimal efficiency ap-
proximately 10% lower than ours, consistent with an ex-
perimentally determined coupling efficiency of 87%.7

Boyd and Kleinman1 derive asymptotic forms for the
dependence of hm on jx for the cases of weak and strong
birefringence and focusing. Without birefringent walk-
off (noncritical phase matching), weak focusing corre-
sponds to the case of bounded plane waves when the har-
monic power varies as the square of the crystal length
and hence, for given wx,y , in proportion to jx ; with strong
focusing, the focal region lies completely within the crys-
tal, and the independence of the harmonic power from the
crystal length requires that hm vary in inverse proportion
to jx . With strong birefringence, walk-off limits the
range of coherent addition to a length la 5 p1/2wx /r, and
the asymptotic dependences thus become Ajx and 1/Ajx.

Fig. 3. Contours of hm (solid curves) and the focusing parameter
jy (dashed curves) as functions of ellipticity e and crystal param-
eter B for optimized second-harmonic generation with elliptical
Gaussian beams. The heavy solid curve shows the optimal el-
lipticity as a function of B. Contour values are 0.02, 0.03, 0.04,
0.06, 0.1, 0.2 and 0.5 for hm and 1.0, 2.0, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5,
4.0, 5.0 and 10.0 for jy .

Fig. 4. Contours of hm (solid curves) and the focusing parameter
jx (dashed curves) as functions of ellipticity e and crystal param-
eter B for optimized second-harmonic generation with elliptical
Gaussian beams. The heavy solid curve shows the optimal el-
lipticity as a function of B. Contour values are 0.02, 0.03, 0.04,
0.06, 0.1, 0.2 and 0.5 for hm and 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0
for jx .
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Such an analysis can be applied to elliptical Gaussian
beams. For the case of high B and e @ 1, we assume the
harmonic intensity to correspond to the incoherent sum of
coherent parcels of length la within an overall length by
(the beam is more strongly focused in the noncritical y di-
rection), and we take the fundamental intensity to be con-
stant in this region and confined to an area with the waist
dimensions. The harmonic is assumed to fill an angular
divergence matching that of the fundamental. Combin-
ing these terms gives a second-harmonic power of

P2 } F S P1

wxwy
D wxwylaS by

la
D 1/2G 2S 1

wxwy
D , (12)

} P1
2wy /r. (13)

Effectively, we have decoupled the x and y dependences,
so wy takes its optimal value and the efficiency is inde-
pendent of wx . Inasmuch as P2 } lhm ,

hm } 1/BAjy. (14)

This behavior is apparent in the upper-right-hand quad-
rant of Fig. 3, where jy is essentially constant and hm is
independent of ellipticity. The analysis is, however,
valid only when la ! by , corresponding to the condition
that e ! BAjy, which accounts for the existence of an op-
timal ellipticity. Beyond this limit, the beam is cylindri-
cally focused and the efficiency varies in inverse propor-
tion to the ellipticity.

The derivation of relation (14) corresponds to the
Boyd– Kleinman case of high b, whereby with increasing
birefringence it becomes appropriate to consider only the
part of the Gaussian whose direction lies within the ac-
ceptance angle of the crystal. In this regime, Boyd and
Kleinman find that an analytic solution is possible; the
same is true in the generalized case with elliptical Gauss-
ian beams.

5. ANALYTIC SOLUTION FOR HIGH b

Once again ignoring absorption, we position the foci at
the center of the crystal and consider the regime where b
is sufficiently large that exp(24s2) (5exp$24
3 @(s8 2 sx)/4b#2%) is essentially unity over the range of
significant uHu2. This means that within the crystal’s ac-
ceptance angle the beam has uniform amplitude; equiva-
lently, the length for coherent addition la should be less
than the crystal length l. The condition that la ! by
again applies, and we assume strong focusing
(bx , by ! l) but continue to make the paraxial approxi-
mation that has been assumed throughout this treat-
ment: modifications for the case of a large walk-off angle
have been considered by Eckardt et al.30 hm can now be
written as

hm 5
2p3/2e

jx
E

2`

`

expF24S s8 2 s

4b
D 2G

3 U 1
2p E

2`

`

exp@is8tx8f~tx8!dtx8#U2 ds8

4b
, (15)

with
f~tx8! 5
1

~1 1 itx8!1/2~1 1 ie2tx8!1/2
g~tx8!, (16)

where the aperture function g(tx8) 5 1 for utx8u , jx and
g(tx8) 5 0 elsewhere. We now invoke Parseval’s theo-
rem and find that

hm 5
p1/2e

4bjx
E

2`

`

uf~tx8!u2dtx8

5
p1/2e

4bjx
E

2jx

jx U 1

~1 1 itx8!1/2~1 1 ie2tx8!1/2U2

dtx8.

(17)

The function of t can be rewritten as

UF 1

~1 1 itx8!~1 1 ie2tx8!
G 1/2U2

5
1

~1 1 tx8
2!1/2~1 1 e4tx8

2!1/2
, (18)

and thus

hm 5
p1/2e

4bjx
E

2jx

jx

@~1 1 tx8
2!~1 1 e4tx8

2!#2 1/2dtx8

5
p1/2

2bjxe
E

0

jx

@~1 1 tx8
2!~e24 1 tx8

2!#2 1/2dtx8.

(19)

Equation (19) is now an incomplete elliptic integral of the
first kind31:

F~f\a! 5 a E
0

x

@~t2 1 a2!~t2 1 b2!#2 1/2dt, (20)

where tan f 5 x/b, cos a 5 b/a, and a . b. In this case
a 5 1 and b 5 1/e2 (e . 1). The integral does not de-
pend on B and increases monotonically with ellipticity to-
ward the state in which hm is optimized with respect to jy
and independent of jx . We therefore write hm in terms
of jy :

hm 5
p1/2

2Bjy
1/2

FS tan21 jy \cos21
1

e2D . (21)

The optimal value of jy in the limit of high B and e is thus
found to be 3.3189, to be compared with the limiting value
of 1.3919 for e 5 1 and with the optimal value of 2.84 for
the complete version of hm when B 5 0. We note that
Eq. (21) is inconsistent with the expression quoted by Ad-
ams and Ferguson,22 which depends equally on wx and
wy .

From our analytic function, with B 5 16, e 5 1, and
jx 5 jy 5 1, we obtain hm 5 p3/2/128 5 0.0435. This re-
sult is in good agreement with the computed result of
0.0430, which is lower by 1%. In general, the approxi-
mation exp(24s2) 5 1 will make the analytic value an
overestimate.
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6. APPLICATION
To determine the best focusing parameters for a specific
crystal and wavelength, it is first necessary to calculate
the phase-matching and walk-off angles from refractive-
index data such as Sellmeier coefficients. From the
phase-matching angle and the refractive index can be cal-
culated the crystal cut, for either normal or Brewster-
angle incidence, and from the walk-off angle it is possible
to work out the B coefficient. The conversion efficiency
and focusing parameters are then given by reference to
Figs. 1 and 2.

For harmonic generation from beams of circular cross
section, elliptical focusing will rarely be worth the losses
and alignment difficulties introduced by the additional
lenses. If a circular Gaussian beam is focused into the
crystal at Brewster’s angle, however, the beam within the
crystal will be elliptical, with e 5 h. For negative
uniaxial crystals the ellipticity will unfortunately lie in
the wrong direction if the crystal is cut to minimize reflec-
tion of the fundamental, as when it is used within an en-
hancement cavity. With positive uniaxial crystals, how-
ever, the ellipticity introduced by the Brewster-angled
face will be in the correct sense.

Ring enhancement cavities usually include off-axis
spherical mirrors, and the modes that they support thus
have elliptical foci. The appropriate orientation of the
doubling crystal will in such cases often not only tolerate
this ellipticity but allow increased efficiency to follow
from it; the same is true for the frequency doubling of di-
ode lasers. For frequency quadrupling,6,7 the efficiency
depends quadratically on that of the first doubling stage,
and elliptical focusing could thus improve the overall con-
version efficiency by a factor of 2. In all cases care must
be taken to ensure that the focal ellipticity and polariza-
tion are appropriately oriented.

The analysis presented in this paper is valid for all but
the broadest-bandwidth lasers. Longitudinal coherence
is required explicitly over a length l1 5 (Dk/k)l, which
corresponds to the longitudinal range that contributes to
the instantaneous output intensity; this length is the re-
sult of the Guoy shift and will thus be of the order of a
wavelength. It is also necessary, however, that the
phase-matching condition be satisfied for the instanta-
neous wavelength, and thus dispersion of the birefrin-
gence should introduce a phase mismatch

lDk ; l
d~Dk !

df

df

dl
Dl ! 1. (22)

Hence [refer to Eq. (4)], the laser bandwidth is limited to
Dl ; 1 /(lk2rdf/dl), where df/dl is the sensitivity of
tuning angle to wavelength. For a typical example of
doubling green light in a 7-mm crystal of b-barium bo-
rate, this sensitivity is ;0.1 nm, making our results valid
for most lasers with pulses longer than a few picoseconds.
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