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Abstract

Enhancement cavities using off-axis spherical mirrors allow the elliptical Gaussian beams from semiconductor diode
lasers to be matched directly to the optimum beam profile for frequency conversion in a nonlinear crystal. We give a
general recipe for the design of such cavities. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The use of resonant cavities to enhance the in-
tensity of fundamental radiation for second har-
monic generation has allowed the technique of
frequency doubling, originally confined to pulsed
and large-frame lasers, to be applied efficiently to
low power continuous-wave laser diodes. Indeed,
by using the harmonic itself as the source for a
second doubling stage, frequency quadrupling of
these tiny devices has become a reality. Whilst the
design of appropriate enhancement cavities in
principle requires only textbook physics, however,
it is in practice complicated by off-axis astigmatism
and Brewster-angle refraction. Many researchers
have therefore simplified the exercise by seeking
solutions with a certain symmetry, such as a cir-
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cular beam waist at the primary or secondary fo-
cus, and either accept imperfect mode matching or
introduce external beam-shaping components.

A travelling-wave ring resonator is generally
preferred to a simple linear cavity for several rea-
sons. First, no light is directly reflected back to the
laser to disturb its stability. Second, only a single
pass through the nonlinear crystal contributes to
the round-trip loss, and the harmonic is generated
unidirectionally. Third, the fundamental and har-
monic beams may be coupled to the cavity through
plane optical components.

The use of off-axis spherical mirrors in optical
resonators containing other astigmatism-inducing
components—specifically, dye cells at Brewster’s
angle—was considered in the early days of the
laser by Kogelnik et al. [1], whose description of
the physics of the situation would be hard to sur-
pass. Dunn and Dunn [2] subsequently extended
the treatment to the case of a ring laser with intra-
cavity frequency doubling crystal at Brewster’s
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angle, and others have since considered related
arrangements in some detail [3,4]. Sun et al. have
recently addressed the calculation of beam pa-
rameters for a given cavity specifically for the
generation of diode laser harmonics [5]. However,
to our knowledge, a usable and general recipe for
the design of such resonators has yet to be pub-
lished.

In this paper, we describe the design of en-
hancement cavities that match an arbitrarily el-
liptical beam such as that emitted by a laser diode,
via an off-axis spherical mirror, to the optimal
beam for second harmonic generation, which in
general is also elliptical. We consider the case of a
four-mirror optical cavity composed of two plane
mirrors and two concave mirrors of equal curva-
ture, although our results contain those for a linear
resonator as a special case. We allow for inclina-
tion of the frequency-doubling crystal either
within or perpendicular to the resonator plane,
and consider explicitly the specific cases of normal
and Brewster’s angle incidence. Starting from the
ellipticity of the fundamental laser beam, an arbi-
trary choice of mirror curvature and the desired
beam profile in the crystal, whose determination
we have addressed in a previous paper [6], we
provide a recipe by which dimensions of a suitable
resonator may be calculated.

2. Resonator geometry

A typical four-mirror, ‘““bow-tie” enhancement
cavity is shown in Fig. 1. The nonlinear crystal is
enclosed at the ‘primary’ beam waist mid-way
between a pair of off-axis spherical concave mir-
rors, whose inclination defines the tangential (azi-
muthal) coordinates (x,z) that are locally aligned
with z parallel to the ray axis. Two plane mirrors,
of which one is usually the input coupler, then
complete the ring cavity. In Fig. 1, the crystal is
inclined in the tangential plane.

We begin by defining the physical dimensions
and characteristics of the cavity and its compo-
nents. The crystal, of thickness r measured per-
pendicular to its faces, is presumed to have a
refractive index 7, and to be inclined with respect
to the ray axis at external and internal angles 0 and

[N

Fig. 1. Schematic layout of the enhancement cavity shown in
plan view. The crystal is here shown inclined at Brewster’s angle
in the tangential orientation. O” is the apparent position of the
focus when viewed from outside the crystal.

¢'. The concave mirrors, with focal length f at
normal incidence, make an angle o with the ray
axis. The positions of the two plane mirrors are
unimportant so long as they complete the cavity
and provide the appropriate round-trip distance,
but in the geometry shown they are also inclined at
an angle o in the tangential plane.

The crystal may alternatively be inclined in the
sagittal (y,z) direction. Strictly, this renders the
resonator nonplanar and thus requires a rather
more complex analysis, not least because the modes
are elliptically polarized [7]. In many practical
cases, however, the distortions introduced will be
small. The dimensions appropriate to the sagittally
inclined geometry are shown in Fig. 2.

Although the bow-tie resonator of Fig. 1 has
been by far the most popular, our analysis is also
valid for the alternative cavity forms shown in Fig.
3, with the corresponding dimensions as indicated.

Fig. 2. Side view of the enhancement cavity showing dimen-
sions appropriate when the crystal is inclined sagittally.
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[

(d)

Fig. 3. Alternative cavities which permit compensation of coma: (a) ring resonator with Brewster’s angle crystal faces oppositely
inclined; (b) ring resonator with concave mirrors oppositely inclined; (c) symmetrical Z-shaped standing-wave cavity; (d) simple linear
cavity, which corresponds to (¢) when « = v = 0. The concave mirrors, which in each case are the nearest to the crystal, have focal

length f except in case (d), when the focal length is /' = 2f.

Cavities (a) and (b) are further implementations of
the ring cavity; (c) is a symmetrical four-mirror
standing-wave resonator; and (d) is a simple
symmetrical two-mirror linear resonator that cor-
responds to a special case of cavity (c).

In Appendix A, we have derived ray-trans-
fer matrices describing various parts of the
cavity round trip. These are summarized in
Table 1.

3. Design procedure

Design of the enhancement cavity starts with the
choice of crystal material, dimensions and cut,
which in turn define the best Gaussian beam for
harmonic generation. Knowing this beam within
the crystal, we calculate the corresponding external
form and the apparent optical thickness of the
crystal. These parameters, together with the ellip-
ticity of the incoming laser beam, then become the
target solutions for a pair of equivalent free-space
cavities corresponding to the tangential (x,z) and
sagittal (y, z) directions and, with the addition of an

assumed mirror curvature, are sufficient to establish
the resonator dimensions by numerical solution.
Finally, we convert the optical dimensions to the
physical positions and orientations of the mirrors.

3.1. Selecting the nonlinear crystal

Crystals are generally chosen on the basis of
their transparency and damage thresholds at the
fundamental and harmonic wavelengths, the re-
quirement of phase matching, the likely conversion
efficiency and, at high powers, the susceptibility to
damage and thermally induced dephasing. The
efficiency depends upon the nonlinearity and Po-
ynting vector walk-off together with the crystal
dimensions, which are usually constrained by
availability and cost. Calculation of the theoretical
conversion efficiency has been thoroughly de-
scribed elsewhere [6,8] and will not be repeated
here; for its absolute calculation, it will be neces-
sary to assume the intensity enhancement due to
the cavity, which depends upon the mirror reflec-
tivity and cavity losses and will typically be a
factor of between 20 and 100. Whether or not a
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Table 1
Transfer matrices describing beam propagation for the tangential and sagittal directions of the cavity*
Tangential Sagittal
t t
. 1 — 1 —
Mg, 2n 2n
0 1 0 1
1 0 ! t/1+n? . 1+
Mg n 2 2
0 7 0 1 0 1
AR 1y | /141
Mg 2 n 2
0 1 0 7z 0 1
) 1 g—1/2 1 g—1t/2
Mnl
AB (0 1 ) < 0 1 )
1 g— ! 1 g— !
Ml/a\B 147 1+n?
0 1 0 1
1 0 1 0
fcosa f cose
1 2v 1 2v
Mae <o 1 ) (0 1 )
1 0 1 0
Mz ( ! 1) (lcosa 1)
fcosa f
ni 1 g—1/2 1 g—1/2
Mer (o 1 ) (0 1
t t
1 g— 1 g—
Mg; 1+ 1+ n?
0 1 0 1
t t
) 1 — 1 —
Mg, 2n 2n
0 1 0 1
I 1432 n 0 ! 1+n?
Mo 2 o ! 21
0 1 n 0 1
1 t1+n? 1 t/1+n? n 0
ME, 2n? 2n? 0 1
0 1 0 1 "

#Where they differ, matrices are given separately for normal incidence (ni) and Brewster’s angle (B) crystal inclination in the
tangential (Bt) or sagittal (Bs) direction.

Brewster’s angled crystal cut is chosen will prob- To calculate the optimal beam for harmonic
ably depend upon the availability of anti-reflection generation, we need to know the optical path
coatings for the normal incidence case. length within the crystal. For a plate of thickness ¢
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and refractive index #, inclined at an angle 0 in a
medium of index 7,, the ray length between the
two faces is

t
j—__mt (1)
\/n3 — n3sin® 0

For the specific case of Brewster’s angle
(tan 0 = 5, /1n,), we have

j it 2)
m

while at normal incidence, the corresponding
length is simply / = ¢.

3.2. Determining the required resonator beam

Having chosen the crystal, we calculate the
optimal fundamental beam [6,8].' Generally el-
liptical, this is characterized in the tangential and
sagittal planes by the complex Gaussian beam
parameters ¢, ,(z), defined at the foci by

b,
Qxy = 2y s (3 )
where

2nw?
bey == @

are the confocal parameters, given in terms of the
Gaussian beam waist radii w,,, the vacuum
wavelength 4y, and the refractive index #. The
chosen crystal parameters define the optimal beam
through the ratio &, , = 1/b,,.

The beam undergoes refraction at the crystal
faces, and from the outside hence appears to have
differently sized and positioned foci. We now cal-
culate the effective confocal parameters b and
focal positions for both planes.

If the required beam waist at the crystal centre
is described, for real b, by

"In the case of frequency quadrupling, the first doubling
stage should be designed according to the recipe for parametric
generation (see Ref. [9]), in order to maximize the power
emitted into the elliptical Gaussian mode of the second stage.

q=i5b (5)

and the appropriate matrix Moa, which describes
propagation from the crystal centre to its face and
subsequent refraction, has elements 4, B, C and D,
then the beam leaving the crystal face, character-
ized by

(6)
could equivalently result from the free propaga-

tion of a beam whose waist is described by

SN
107

2 ™

through a distance p (and refractive index #,) to
the same point. With reference to Eq. (A.4), we
may write

q=4"+p (8)
and thus

p=Re(q) ©)
b = zlm(q’). (10)

1

Using the matrices given in Table 1 with the
true beam parameters b, and b, at the crystal
(primary) focus, we hence derive equivalent free-
space parameters ] and b and the corresponding
equivalent focus-crystal face distances p, and p,,
which for later convenience we write in terms of
the mean p and astigmatic focal shift z as
px =p+z/2and p, = p—z/2. For the generic case
in which the crystal is inclined at an arbitrary angle
0, we obtain

o Lm0 = (o 43 sin” 0) an
4 (n} —n3 sin’ 0)3/2
|Z‘ - E N ) 2 3/2° ( )
(n} — n}sin” 0)
1 —sin’0
b = mn, (13)

3.0
n—n sin’ 0
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where z is positive if the crystal is inclined sagit-
tally with respect to the mirrors and negative if
inclined tangentially, and where b” = (1,/1,)b in
the direction in which the crystal is not inclined.
The mean total distance u between the concave
mirror and the apparent crystal foci is given by
u = p+s, where s is the distance from the mirror
to the crystal face; the tangential and sagittal
crystal focus distances are thus u, = u +z/2 and
u, = u —z/2 respectively. Expressions for 5] , p
and z for our three specific configurations are gi-
ven in Table 2.

The cavity, which is now defined by the mirror
focal length f, its incidence angle o, the astigma-
tism z and the mean distance between the mirror
and the crystal focus u, is now examined separately
in the tangential and sagittal directions as if the
crystal were absent. Our aim is to find conditions
under which the images of the chosen beam radii
coincide to form a secondary focus at a distance v
from the mirror and are in the same proportion as
the axes of the elliptical laser beam.

To simplify subsequent calculation, we convert
the mirror object and image distances and the
confocal parameters to dimensionless quantities by
scaling according to the focal length. Thus b;"y
become X, Y = b)’c’,y/Zf, z becomes Z = z/2f and u
and v are rewritten as U = u/f and V =v/f. We
also introduce the parameter ¢ = coso. Beam
waists are already scaled in terms of the wave-
length 4y by our use of the confocal parameter b.
Finally, we define a secondary waist ellipticity
parameter e = wy,/wy,, where wy,,, are the sec-
ondary waist radii. The true and reduced param-
eters used in our analysis are summarized in
Table 3.

Table 2
Effective beam parameters and positions for normal incidence
and for tangential and sagittal inclination at Brewster’s angle

b »p z by
ni o by/n  t/2n 0 by/n
Bt b/ LoV L Tr R —1) b/

G 1) —gaViw(r=1)

Bs b./n

%(1 +112)3/2 +2L]14 VI+nr(nF —1) by /1’

Table 3
True and reduced parameters used for calculation
Property True Scaled
Scale by ~ Fundamental air Ao
wavelength
Focal length at f
normal incidence
Define Tangential confocal 5 X =0")2f
parameter
Sagittal confocal by Y =b]/2f
parameter
Astigmatism z=p.—p, Z=z/2f
Secondary waist e=w,/wo
ellipticity parameter
Solve for ~ Mirror incidence o ¢ =cosu
angle
Mean distance to u U=u/f
crystal focus
Distance to v V=uv/f

secondary focus

3.3. Solving the resonator equations

To find the dimensions (u,v, ) of a cavity giv-
ing the required parameters b7, b, z, secondary
waist ellipticity parameter e and mirror focal
length f, we refer to the function

F (u,v) = ( )(1—(14—1)(1;—1)), (14)

shown in Fig. 4. This is simply the equation which,
for normal incidence and in the absence of astig-
matism, defines the radius w of the waist which lies
a distance d; from a concave mirror of focal length
f when the secondary waist distance is required to
be d,:

‘I'EW2 2_6‘ d1 d2
(Gr) =7(%%) 13

The region of positive & (u,v), for which con-
tours are shown, corresponds to the familiar range
of cavity stability. It should be noted that the axis
labelling is not identical to that on the well-known
diagram for a two-mirror laser cavity; the case
addressed here would correspond instead to a
linear resonator of plane mirrors with a single in-
tracavity lens.

In terms of the function % (u,v), then, our aim
is the simultaneous solution of

u—1

v—1
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Fig. 4. Logarithmic plot of & (u,v) for graphical solution of
astigmatic cavity design, showing the normalized principal
waist size as a function of cavity geometry. The dashed line is
the locus of the principal mode maxima.

(U7X
f( - ,¢)¢2, (16)
F(U - 2)p. V) = ¢, (17)

FW[6.(U+2)/4) _ 1 )
FVo,(U=2)p) e¢’

which respectively require specific values for the

crystal waist radii in the tangential and sagittal

directions and the secondary waist ellipticity. Gi-

ven values for X, Y, Z and e, these equations allow

us to find values of U, V and ¢.

A first approximation can sometimes be found
graphically. For the example of normal incidence
(Z = 0), the solution to the first two equations lies
at the intersection of the appropriate contours,
displaced according to o along the 45° line shown.
Solution of the third equation involves evaluation
of the function at the reflection in this 45° line of
the point of intersection, the process being repeated
for a range of ¢ until the required value is found.

In the more general case, numerical solution is
necessary. For given values of X, Y, Z and ¢, Egs.
(16) and (17) may be combined to yield a quartic
equation for U, which we give in Appendix B;

varying ¢ then allows us to achieve the required
ellipticity e. In most practical cases, there will be a
large range of f (and a corresponding range of «)
for which solutions are possible.

3.4. Extracting the cavity dimensions

Having found values for the scaled parameters
U, V and ¢, we may immediately write down the
dimensions u, v and « upon which they are based.
For practical application, however, these must be
converted into the real dimensions g, ¢, d and &
shown in Figs. 1-3.

The distance g from the crystal centre to the
concave mirror is given by g=s+j=u+j—p,
where p has already been calculated in Eq. (11)
and j is given by

j= é cos(0—0)
¢ Mysin® 0 + \/(1 — sin 0)(n? — y}sin’ 0)

2 \/ 1} = n3sin® 0
(19)

For the specific case of Brewster’s angle
(tan 0 = #n,/n,), we have

. m
J = 22 3 (20)
VT3
and thus
Aot —1
PC Ml (21)

At/ +1
while at normal incidence we have simply
2j = 1=t and hence

n—1
= t———. 22
g=utiy (22)
The lateral displacement ¢ of the external rays
from the crystal centre in the both Brewster’s an-

gled cases is given by
C_Esin(@—(?/) -1

t
2 cos0 2p P+l

For a bow-tie resonator, the transverse
displacement of the plane mirrors (and thus the

(23)
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secondary beam waist) from the crystal centre is
given simply by
d=(v+g)tano; (24)

an alternative expression, which is also valid when
the resonator forms a trapezium (vcos2o < g), is

1
d= o (v—gcos2o — |vcos 2o — g|). (25)
If v < g, then the plane mirrors will be closest to
the crystal, and the concave mirrors will thus en-
close the secondary focus. In the configuration
shown, the plane containing this secondary beam
waist will be displaced from that containing the
crystal centre by a distance
c

h= . 26
tan o ( )

4. Discussion

Although few authors give enough details to
allow complete analysis of their resonators—there
is a particular confusion as to whether beam pa-
rameters apply within or outside the crystal—a
brief survey allows some general observations and
a little practical advice.

4.1. Cavity dimensions

Most researchers have chosen configurations
which correspond to the narrowing upper part of
the region of cavity stability in Fig. 4. Typically, U
takes a value between 1.03 and 1.2, while V is in
the range from 5 to 10; the mirror incidence angle
o is between 5° and 20°, and X is much less than
unity.

Various considerations lead to such choices.
Firstly, the elliptical laser beam is usually made
roughly circular before being matched into the
cavity. A circular waist is then often chosen at the
crystal, so that the optimal confocal parameter in
both tangential and sagittal directions is smaller
than the crystal length [8]. As shown in Table 2,
the confocal parameter of the equivalent free-
space beam will be smaller still, by at least a factor
of n. To allow a reasonable space around the
crystal, we usually find ¢ < 2g; this also accom-

modates standard choices, mostly between 2 and 5
cm, of the mirror focal length—a free parameter
which, provided always that solutions are possible,
may be chosen according to the designer’s whim.
The scaled confocal parameters X, Y and astig-
matism Z are thus all much less than unity, U is
close to 1 and the mirror incidence angle o is rel-
atively small.

Using the procedure outlined in this paper, the
ellipticity of the secondary waist may be matched
directly to that of the laser emission: whilst there
may not always be a convenient solution, there is
no fundamental constraint. Further, as we have
shown elsewhere [6], the optimal beam for har-
monic generation is often itself elliptical (and tol-
erant of a degree of ellipticity), in which case the
larger of the corresponding confocal parameters
may approach cavity dimensions.

There are some advantages in moving to smal-
ler cavities which, as noted by Ritter et al. [10],
offer better mechanical and thermal stability. The
free spectral range of the resonator, which is often
used to control the laser wavelength, is increased,
as is the absolute line width of the cavity reso-
nance. Further, if the resonator is to be varied in
temperature, evacuated or flooded with dry ni-
trogen, then the smaller size is generally helpful.
One important class of design which indeed falls
well into the smaller regime is that of the mono-
lithic resonator [11], in which the cavity mirrors
are formed by the faces of the crystal itself. For
such cavities, the mirror separation, curvature ra-
dius and beam confocal parameters are all similar;
U and V are typically around 1.3.

4.2. Mirror curvature and incidence angle

The freedom so far to make an arbitrary choice
for either the mirror focal length or incidence an-
gle allows us to take into account higher-order
effects such as coma. This has been treated using
geometrical optics by Dunn and Ferguson [12],
who found that for b < /, coma due to the off-axis
mirror and a crystal face inclined tangentially at
Brewster’s angle cancel when

(P +1)"(n* — 1)

fsino =t -
n

(27)
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provided that the crystal face is inclined in the
direction that takes it closer to being parallel to the
mirror.

This latter requirement is not satisfied by the
common arrangement in which a crystal with
parallel faces is placed within the bow-tie resona-
tor of Fig. 1, but may indeed be met by the al-
ternative cavities shown in Fig. 3. In cavity (a), the
crystal faces are inclined in opposite directions
[13,14]; g and ¢ are as given in Egs. (21) and (23),
while # = 0 and

d=(v+g)tan (oc — (60— 0’)/2), (28)

where g’ = gcos(0 — 0') + csin(6 — ). Alterna-
tively, as in cavity (b), it may be the mirrors that
are oppositely inclined [15-17]; g and ¢ are again
unchanged, and the plane mirror incidence angle is
given by

§ = tan"! ccos2o — gsin2a (29)

csin20 + gcos2u — v’

If coma may be neglected and the secondary
waist ellipticity is unimportant, then both f and
¢ =cosa will be free parameters, and we may
instead choose the configuration in which the
mode size is least sensitive to mirror position,
which for small # may be considered to occur
when the tangential and sagittal beam waists are
simultaneous maxima as functions of the concave
mirror separation [18]. The calculation of this
configuration is described in Appendix C.

4.3. Mirrors and coupling

Apart from their radii of curvature or focal
lengths, the mirrors are defined by their reflectivi-
ties which, together with crystal and other optical
losses, determine the enhancement factor of the
resonator: their role has been thoroughly analysed
elsewhere [19,20], and we shall not discuss it fur-
ther here. Usually, three of the mirrors are highly
reflecting, the fourth having a transmission of 1-
2% by which to couple in the fundamental radia-
tion. Because the cavity losses, and thus optimal
mirror reflectivity, cannot be known until the
cavity is tested, several researchers have suggested
using highly reflecting mirrors throughout and

controlling the enhancement factor via a separate
variable optical coupler [20,21].

At least one of the mirrors should be highly
transmitting at the wavelength of the harmonic to
allow it to be extracted. To avoid cylindrical
focussing, it is better to couple light into and out of
the resonator through the plane mirrors. Astig-
matism in the fundamental and harmonic beams
can be removed by slightly tilting the input
focussing and output collimation lenses.

The optical mounts used should be stable, free
of backlash and offer fine adjustment, and the
flexure type [22,23] is often chosen?. As always, it
is helpful to decouple rotational and translational
adjustments. The mounts can usually be posi-
tioned according to their calculated locations and
aligned using the fine adjustments alone [24]. We
find a small CCD video camera to be invaluable
during alignment: with the commercial lens re-
moved, both fundamental and harmonic wave-
lengths can usually be detected.
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Appendix A. Ray-transfer matrices

In the following section, we give the ray-trans-
fer matrices that describe the resonator. Although
we do not use all of them for the design of the
cavity, they are useful for checking the results and
for determining, for example, the beam intensities
at the mirrors and crystal faces. We therefore give
them in full.

2 Although nickel silver has been suggested for flexure mounts
(see Ref. [24]) because of its high tensile strength to Young’s
modulus ratio, many high-tensile alloys of aluminium possess
similar properties, particularly when tempered. More readily
available and easy to machine, they can be anodised to give a
harder surface and a convenient black finish.
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The matrices describe the propagation of an
optical ray, characterized by its displacement r
from, and angle dr/dz to, the optical axis. We
write these as a column vector,

R= Elr . (A.1)
(%)

In this form [7], the Gaussian beam waist is
transformed according to

g _ Aq/n +B

— , A2
n Cqi/m +D (A-2)

where A, B, C and D are as usual the elements of
the appropriate ray-transfer matrix and the
Gaussian beam parameter ¢ is defined by

1 1 . 7 1 2i

R S e (A.3)
g R mwny R b

/o being the fundamental wavelength in vacuo, R
and w respectively the radius of curvature and
Gaussian beam waist radius, 7 the relevant
refractive index and b the beam confocal param-
eter.

A.1. Free propagation

The ray-transfer matrix for propagation
through a distance z in a medium with a refractive
index 7 is

M = ((1) Z{"). (A.4)

A.2. Refraction at an angled plate

Refraction at an interface inclined at 0, to the
incident ray and 0, to the refracted ray is described
by the matrix

cos 0, 0
M = | cost, : (A.5)
0 cos 0,
cos 0,

For a plate of thickness ¢ and refractive index 7,
inclined at Brewster’s angle within a medium of
index 1,, the matrix describing transmission in the

tangential plane of the crystal is thus, with refer-
ence to Eq. (2),

P 2 2 Uil 0
—= 0 g+
1 ymTi U5l

.

M - 7 | (A.6)
U 0 1 n
/M + 13

M= —— | (A7)

1
0 1

This may be broken into two matrices accounting
respectively for propagation from the entrance
face to the plate centre and from the centre to the

exit face:
N A A
MFO = 1 217% ’12 112 s (Ag)
0 1 0
LENN ! m+n
— M —a
Moa 0 m 2i; ' (A9)
b 0 1

Propagation in the sagittal plane of the crystal
is described simply by the matrix for free prop-
agation through the distance / in a medium of
index #,,

nm+m

1 +——-
ny
0 1

M = (A.10)

Astigmatism is thus introduced because the
crystal differs in apparent thickness between the
tangential and sagittal planes. The maximum dif-
ference of 0.449¢ occurs at 1, /5, = 1.60.

A.3. Off-axis spherical mirror

The ray-transfer matrices for a spherical mirror
of focal length f (and hence curvature radius
R = 2f) at an angle « to the beam axis are, in the
mirror’s tangential plane,

1 0
Mr = (_ n 1) (A.11)
fcosa
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and in its sagittal plane,

1 0
M;s = —%cosa 1)

Using the above results, we may now write down
the transfer matrices for successive stages of the
cavity round-trip, as summarized in Table 1. For
clarity, components have not always been com-
bined into a single product matrix; where they
depend upon the crystal orientation, the respective
matrices are given separately.

(A.12)

Appendix B. Solution for U

For given values of X, Y, Z and ¢—as, for
example, when we have defined the target crystal
beam waists and astigmatism and have made an
arbitrary choice of mirror focal length—Eqs. (16)
and (17) may be combined to yield a quartic
equation in U as a function of the mirror incidence
angle via ¢ = cosa. Since this is a rather messy
process, we give the result obtained using Math-
ematica [25] below.

0=U"¢’ =)+ U (1 - ¢%)
+ U (¢ (X +2) + ¢’ (1 —22%)
+ (X +Y —4Z2)+ $(—1+27°) - Y + 2)
+U(¢*Z(-2X +2Z) — ¢*(2X + Y — 2Z)
+ 207 (X +Y)Z + $(X +2(Y + 2))
- Z(2Y + 7))
+ (¢*(x —2)2
+ ¢ (X(Y+22)+ Z(-Y - 3Z+ 7))
+ (X — Y —2Z - XZ* + YZ* +42°)
—p(X(Y+2Z)+Z(-2Y =32+ 2%))
~Z2(Y +2)). (B.1)
The solution to this equation may be inserted into
Eq. (18) to establish the secondary waist ellipticity
corresponding to this incidence angle and, by re-

peating the process for a range of ¢, an overall
solution may thus be found.

Appendix C. Solution for greatest stability

It is apparent from Fig. 4 that the beam waist
may be adjusted, by varying u, up to a maxi-
mum value determined by v [26]. At these
maxima, the mode size is least sensitive to mir-
ror position and, for some researchers, simulta-
neous maxima of both tangential and sagittal
mode sizes therefore provide the preferred con-
figuration [18].

Contours of constant & (u,v), corresponding
to a given waist size, have a common form in a
linear plot, being scaled about the point (1,1) by
a factor of /Z in u and its reciprocal in the v-
direction. The turning points of these curves
((0F JOu), = 0) describe a locus, shown dashed
in Fig. 4,

(u—1(v—-1)=1 (C.1)

2

with # = (u — 1)*. For the u and v coordinates to
coincide for both the tangential and sagittal di-
rections, we find

2Z+Y—X:¢—é, (C.2)
Lty g 1—0 C.3
E(b +¢*¢*ﬁ* : (C3)

Substituting for X, Y and Z from Table 3, we seek
a focal length f that will simultaneously satisfy
these equations. If both cavities lie in the upper
right quadrant of Fig. 4 (u,v > 1), this will be gi-
ven by

(220 b7 )bz
2
(02-27)
2 3
by (b 0) (2240~ by) (22467~ 1)

4(b;;—b;{)2

(C4)
The sign of the b;/‘y should be changed if the
corresponding cavity instead lies in the opposite
quadrant (u,v < 1). The mirror incidence angle
may then be found by substituting this value back

into Eq. (C.2) to obtain ¢.

fi=

+
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