Preface

These notes accompany the second year core physics course PHYS2006 Classical Mechanics. They are not necessarily complete and are *not* a substitute for the lectures. Certain sections are labelled with a star at the end of the section name, and contain material which is either revision or goes beyond the main line of development of the course. You do not need to consider such sections as part of the syllabus, although they may prove helpful conceptually and useful for other courses.

Background Information

The course continues the mechanics begun in *Motion and Relativity*, PHYS1015. It relates to other physics courses, especially *Quantum Mechanics* and *Crystalline Solids*, and paves the way for *Theories of Matter, Space and Time*.

The course begins by addressing some familiar situations, and progresses to others whose characteristics might be less familiar and perhaps surprising. Throughout, the aim is to establish the formal mathematical basis for classical Newtonian mechanics, and to derive the rules of quite complex behaviours from a few straightforward principles: Newton's laws, the principle of energy conservation, and the properties of Euclidean space. We shall examine the rules governing rigid bodies, their trajectories in external potentials, and what happens when the motions of different bodies are coupled. Along the way, we shall consider planetary motions, gyroscopes and angular momentum, weather systems, and the unique sound of the pianoforte. We shall see the importance of identifying symmetries to help our physical understanding, and glimpse the Hamiltonian and Lagrangian approaches to dynamical situations that link classical mechanics to quantum mechanics and wave physics.

We return to gravity, and derive the important result that the gravitational effect of a spherically symmetric object is the same as the effect of a point-like object, of the same total mass, at its centre. We then discuss Kepler's laws of planetary motion – an early triumph for Newtonian mechanics: to link the observed effects of gravity on the Earth with the force governing celestial motion was a stunning achievement.

We actually begin, however, by considering the motion of systems of particles, allowing us to study problems such as rocket motion. We then look at rotational dynamics, applying Newton's Laws to angular motion, encountering angular velocity, angular momentum and, for systems of particles, the moment of inertia. We shall see some of the seemingly counterintuitive effects that arise in the motion of spinning objects.

While we normally use inertial coordinate systems, the rotation of the Earth on its axis makes coordinate systems fixed to the Earth non-inertial. We shall derive the equation of motion in such a reference frame and see the effects that arise, discussing especially the Coriolis term.

Finally, we consider oscillations and waves in systems of coupled oscillators.

Course Information

Prerequisites The course will assume familiarity with the first year physics and mathematics core courses, particularly PHYS1013, PHYS1015, MATH1006/8 and MATH1007.

Teaching Staff Dr Tim Freegarde is the course coordinator and lecturer. His office is Room 5019 in the School of Physics and Astronomy (building 46) and he can be contacted by email to timf@soton.ac.uk or by telephone on extension 22347.

Course Structure The course comprises about 30 lectures, three per week. Each week there is a one hour workshop where you work on a problem set. Your solutions should be handed in by 2pm on Fridays to the box opposite the First Year Laboratories, and will be returned after marking at the next problems workshop.

Course Materials A handout of printed notes is available (a copy is provided for every student at the start of the course). These notes are *not* necessarily complete, however. Lecture slides, weekly exercises, past exam papers and other course materials may be found on the course website

http://phyweb.phys.soton.ac.uk/quantum/phys2006.php

Study Requirements and Assessment Since it is part of your physics foundation, this course's orientation is towards problem solving, based on a small number of principles. It is very important that you study the weekly problem sheets. They count for 10% of the marks for the course.

The examination will contain two sections, section A with a number of short questions (typically five) all of which must be answered, and section B with four questions from which you must answer two and only two. Section A carries 1/3 and section B carries 2/3 of the examination marks. The way the final mark for this module is worked out is explained in the Student Handbook.

Acknowledgements Special thanks to Prof. Jonathan Flynn who originally wrote these notes and maintained and improved them up to May 1999, and to Profs. Tim Morris and Stefano Moretti who took over and updated them till 2015.

Tim Freegarde School of Physics and Astronomy University of Southampton September 1995. Revised: September 1996, January 1998, January 1999, May 1999, October 1999, October 2000, October 2001, October 2002, October 2003, October 2004, October 2005, October 2006, October 2007, October 2008, January 2010, January 2011, January 2012, January 2015, January 2016

Typeset using $\ensuremath{\mathbb{E}}\xspace{T_E}\xspace{X}$ and dvips

Reading List and Syllabus

Reading List

- D Acheson, From Calculus to Chaos: an Introduction to Dynamics, Oxford University Press 1997
- TL Chow, Classical Mechanics, John Wiley 1995
- PA Tipler, Physics for Scientists and Engineers (Vol 1, 5th Edition), Freeman 2004
- G R Fowles and G I Cassiday, Analytical Mechanics 5th edition, Saunders College Publishing 1993
- A P French, Vibrations and Waves, MIT Introductory Physics Series, Van Nostrand Reinhold 1971
- A P French and M G Ebison, Introduction to Classical Mechanics, Van Nostrand Reinhold 1986
- T W B Kibble, Classical Mechanics 2nd edition, McGraw-Hill 1973
- T W B Kibble and F H Berkshire, Classical Mechanics 5th edition, World Scientific Publishing 2004
- J B Marion and S T Thornton, Classical Dynamics of Particles and Systems 4th edition, Saunders College Publishing 1995
- Fowles and Cassiday's book is full of examples and is the recommended text, although it stops short of discussing one-dimensional crystal models. The treatment of mechanics in Chow's book parallels the course quite closely and has a modern viewpoint. Kibble or Marion and Thornton cover almost everything, but are mathematically more sophisticated. French and Ebison (and French's book on Vibrations and Waves) have good physical explanations but don't cover all the material.
- Acheson's book is recommended as supplementary reading and for general background. Although described by its author as "an introduction to some of the more interesting applications of calculus," this book is principally concerned with dynamics, how things evolve in time, and links quite well to some of the topics in this course.

All others are useful to integrate.

Further, two good foundation books to always have at hand are

K F Riley and M P Hobson, Essential Mathematical Methods for the Physical Sciences, Cambridge University Press, 2011

K F Riley and M P Hobson, Foundation Mathematics for the Physical Sciences, Cambridge University Press, 2011

Syllabus

Linear motion of systems of particles

- centre of mass
- total external force equals rate of change of total momentum (internal forces cancel)
- examples (rocket motion, ...)

Angular motion

- rotations, infinitesimal rotations, angular velocity vector
- angular momentum, torque
- angular momentum for a system of particles; internal torques cancel for central internal forces
- rigid bodies, rotation about a fixed axis, moment of inertia, parallel and perpendicular axis theorems, inertia tensor mentioned
- precession (simple treatment: steady precession rate worked out), gyrocompass described

Gravitation and Kepler's Laws

- law of universal gravitation
- gravitational attraction of spherically symmetric objects
- two-body problem, reduced mass, motion relative to centre of mass
- orbits, Kepler's laws
- energy considerations, effective potential

Non-inertial reference frames

- fictitious forces
- motion in a frame rotating about a fixed axis, centrifugal and Coriolis terms apparent gravity, Coriolis deflection, Foucault's pendulum, weather patterns

Normal modes

- damped and forced harmonic oscillation, resonance (revision)
- coupled oscillators, normal modes
- boundary conditions and eigenfrequencies
- beads on a string

Contents

1	Mot	ion of Systems of Particles	1
	1.1	Linear Motion	1
		1.1.1 Centre of Mass	2
		1.1.2 Kinetic Energy of a System of Particles	2
		1.1.3 Examples	4
	1.2	Angular Motion	5
		1.2.1 Angular Motion About the Centre of Mass	6
	1.3	Commentary	7
2	Rot	ational Motion of Rigid Bodies	9
	2.1	Rotations and Angular Velocity	9
	2.2	Moment of Inertia	10
	2.3	Two Theorems on Moments of Inertia	12
		2.3.1 Parallel Axis Theorem	12
		2.3.2 Perpendicular Axis Theorem	13
	2.4	Examples	14
	2.5	Precession	15
	2.6	Gyroscopic Navigation	16
	2.7	Inertia Tensor [*]	17
		2.7.1 Free Rotation of a Rigid Body — Geometric Description [*] .	18
3	Gra	vitation and Kepler's Laws	21
	3.1	Newton's Law of Universal Gravitation	21
	3.2	Gravitational Attraction of a Spherical Shell	23
		3.2.1 Direct Calculation	23
		3.2.2 The Easy Way	24
	3.3	Orbits: Preliminaries	25
		3.3.1 Two-body Problem: Reduced Mass	25
		3.3.2 Two-body Problem: Conserved Quantities	27
		3.3.3 Two-body Problem: Examples	27
	3.4	Kepler's Laws	28
		3.4.1 Statement of Kepler's Laws	28
		3.4.2 Summary of Derivation of Kepler's Laws	29
		3.4.3 Scaling Argument for Kepler's 3rd Law	33
	3.5	Energy Considerations: Effective Potential	33
	3.6	Chaos in Planetary Orbits *	36

4	Rot	ating Coordinate Systems	39
	4.1	Time Derivatives in a Rotating Frame	39
	4.2	Equation of Motion in a Rotating Frame	40
	4.3	Motion Near the Earth's Surface	40
		4.3.1 Apparent Gravity	41
		4.3.2 Coriolis Force	42
		4.3.3 Free Fall — Effects of Coriolis Term	43
		4.3.4 Foucault's Pendulum	46
5	Sim	nple Harmonic Motion [*]	49
	5.1	Simple Harmonic Motion	49
		5.1.1 General Solution	50
	5.2	Damped Harmonic Motion	50
		5.2.1 Small Damping: $\gamma^2 < \omega_0^2$	51
		5.2.2 Large Damping: $\gamma^2 > \omega_0^2$	52
		5.2.3 Critical Damping: $\gamma^2 = \omega_0^2$	52
	5.3	Driven damped harmonic oscillator	53
6	Cοι	upled Oscillators	55
	6.1	Time Translation Invariance	55
	6.2	Normal Modes	56
	6.3	Coupled Oscillators	57
	6.4	Example: Masses and Springs	58
		6.4.1 Weak Coupling and Beats	59
7	Nor	rmal Modes of a Beaded String	63
	7.1	Equation of Motion	63
	7.2	Normal Modes	64
		7.2.1 Infinite System: Translation Invariance	64
		7.2.2 Finite System: Boundary Conditions	65
		7.2.3 The Set of Modes	66
Α	Sup	oplementary Problems	69