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Section A

A1. Explain what are meant by the centre of mass and moment of inertia. Give

expressions for both properties, for a system comprising a number of particles

with masses mi and positions ri. [ 4 ]

The centre of mass rCM is the point within an object that would follow the same trajectory if replaced by

a pointlike particle with the same mass as the object and subject to the same external forces. [ 1 ]

rCM =

∑
i miri∑
i mi

. [ 1 ]

The moment of inertia I is a measure of the object’s resistance to changes in rotational motion; it is

the constant of proportionality between the angular momentum and angular velocity, and between the

torque and angular acceleration. [ 1 ]

The moment of inertia about a single axis n̂ is given by

In =
∑

i

miR2
i =

∑
i

mi |n̂ × ri|
2

where Ri is the perpendicular distance of the ith particle from the rotation axis. [ 1 ]

A2. A uniform solid disc of radius a has a hole of radius b bored axially through its

centre to form a ring of mass M. Show that the moment of inertia I of the ring

about its axis of rotational symmetry is

I =
1
2

M
(
a2 + b2) . [ 4 ]

We may divide the ring into thin-walled tubes of radius r, radial thickness dr and density ρ per unit area,

each of which will have a moment of inertia

I(r)dr = (ρ2πrdr) r2. [ 1 ]

The total moment of inertia is found by integrating this from the inside to the outside of the ring:

I =

∫ a

b
ρ2πr3dr = 2πρ

[
r4

4

]a

b
=
πρ

2
(
a4 − b4) =

πρ

2
(
a2 − b2) (a2 + b2) . [ 1 ]

The total mass is similarly found to be

M =

∫ a

b
ρ2πrdr = 2πρ

[
r2

2

]a

b
= πρ

(
a2 − b2) . [ 1 ]

The moment of inertia is hence

I =
1
2

M
(
a2 + b2) . [ 1 ]
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A3. A cricketer strikes a ball with a bat of mass m and moment of inertia I (about

its centre of mass), and imparts an impulse ∆p. Show that, if no impulse is

to be felt at the handle, the change in the angular velocity of the bat must be

∆ω = ∆p/(mD), where D is the distance from the handle to the bat’s centre of

mass. [ 2 ]

If no impulse is felt at the handle, the change in momentum of the bat will equal the impulse imparted

by contact with the ball. Hence, if ∆v is the change in centre-of-mass speed of the bat,

m∆v = ∆p. [ 1 ]

If the speed at the handle is unchanged, the angular velocity of the bat must hence change by

∆ω = ∆v/D = ∆p/(mD). [ 1 ]

Hence show that the ball should strike the bat a distance D + I/(mD) from the

handle – a point known as the centre of percussion. [ 2 ]

[Assume the angular velocity and moment of inertia to be about the same axis,

perpendicular to the plane defined by the handle, point of impact and impulse.]

The bat’s angular momentum must hence change by

∆L = I∆ω = R∆p [ 1 ]

where R is the distance of the impulse from the centre of mass. The ball must hence strike the bat a

distance

D + R = D + I
∆ω

∆p
= D +

I
mD

[ 1 ]

from the handle – the sign being that which rotates the bat’s centre of mass about the handle in the

same direction as the impulse.

A4. The magnitude g of the acceleration due to gravity is found to be greater down

a mine than it is on the Earth’s surface. Show that this can be explained, taking

the Earth to have spherical symmetry, if

ρs <
2
3
ρav

where ρav is the average density of the Earth and ρs its density at the surface. [ 4 ]
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4 PHYS2006W1

For a spherically symmetrical mass distribution, the gravitational attraction will be equal to that of the

mass M, acting at the centre of the Earth, which lies within a sphere whose surface passes through

the measurement point. Hence, if the Earth’s radius is R and the distance from its centre to the

measurement point is r, the mass will be

M =
4
3
πR3ρav − 4πR2(R − r)ρs. [ 1 ]

The local value of g will be

g =
GM
r2

[ 0.5 ]

and hence its rate of change with height will be

dg
dr

= −2
GM
r3 +

G
r2

dM
dr

=
G
r2

(
dM
dr
−

2M
r

)
[ 1 ]

which, at the Earth’s surface, will be

G
R2

(
4πR2ρs −

2
R

4
3
πR3ρav

)
= 4πG

(
ρs −

2
3
ρav

)
, [ 1 ]

which is negative – i.e. g decreases with ascent – if

ρs <
2
3
ρav. [ 0.5 ]
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A5. Show that, if a spacecraft of total mass m(t) propels itself by ejecting exhaust

gas from its rocket motor with a relative velocity u, then its velocity v(t) satisfies

mdv = −udm, [ 2 ]

and hence, making clear any assumptions in your derivation, that the initial and

final speeds vi and v f are related to the initial and final masses mi and m f by

v f = vi + u ln
mi

m f
. [ 2 ]

Equating the total momenta of the spacecraft and exhaust before and after ejection of an infinitessimal

mass dm that results in a velocity increase dv,

mv = (m − dm) (v + dv) + dm (v + u) . [ 1 ]

Expanding this expression, cancelling terms, and neglecting the term dmdv, which will be of vanishing

significance for infinitessimal changes, we obtain

mdv = −udm. [ 1 ]

Assuming u and v to be aligned, this expression may be rearranged to give

dv = −u
dm
m

[ 1 ]

which can be integrated to give

v f − vi = −u
(
ln m f − ln mi

)
hence

v f = vi + u ln
mi

m f
. [ 1 ]
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Section B

B1. Show that, if a fixed-length vector A rotates with angular velocity ω about an

axis defined by the vector ω̂, and we define ω ≡ ωω̂, then

dA
dt

= ω × A. [ 4 ]

From a suitable diagram, we see that the infinitessimal change dA resulting from rotation of A through

an infinitessimal angle dϕ about ω̂ will be

dA = ω̂ × Adϕ. [ 2 ]

Dividing by an infintessimal timestep dt and noting that the angular velocity ω ≡ dϕ/dt,

dA
dt

= ω̂ × A
dϕ
dt

= ωω̂ × A = ω × A. [ 2 ]

The unit vectors î′, ĵ′ and k̂′ of a rotating coordinate frame rotate with angular

velocity ω about an axis ω̂, so that a vector a ≡ aiî + a jĵ + akk̂ in an inertial

frame
{

îĵk̂
}

may be written at a given time as b ≡ biî′ + b jĵ′ + bkk̂′. Show that

da
dt

= ḃ + ω × b

and hence that
d2a
dt2 = b̈ + 2ω × ḃ + ω × (ω × b) ,

where ḃ ≡ ḃiî′ + ḃ jĵ′ + ḃkk̂′, b̈ ≡ b̈iî′ + b̈ jĵ′ + b̈kk̂′, and ḃi ≡ dbi/dt etc. [ 6 ]

In an inertial frame, the unit vectors of the rotating frame change with time, so the vector must be

differentiated as a product [1 mark per line]: [ 3 ]

da
dt

=

(
dbi

dt
î′ + bi

dî′

dt

)
+

(
db j

dt
ĵ′ + b j

dĵ′

dt

)
+

(
dbk

dt
k̂′ + bk

dk̂′

dt

)
= ḃi î′ + ḃ jĵ′ + ḃkk̂′ + biω × î′ + b jω × ĵ′ + bkω × k̂′

= ḃi î′ + ḃ jĵ′ + ḃkk̂′ + ω × b ≡ ḃ + ω × b.

Differentiating a second time, noting that the vectors a and b are equivalent [1 mark per line], [ 3 ]

d2a
dt2 =

(
b̈i î′ + ḃi

dî′

dt

)
+

(
b̈ jĵ′ + ḃi

dî′

dt

)
+

(
b̈kk̂′ + ḃi

dî′

dt

)
+ ω ×

da
dt

= b̈i î′ + b̈ jĵ′ + b̈kk̂′ + ḃiω × î′ + ḃ jω × ĵ′ + ḃkω × k̂′ + ω ×
(
ḃ + ω × b

)
= b̈ + ω × ḃ + ω × ḃ + ω × (ω × b) = b̈ + 2ω × ḃ + ω × (ω × b) .
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Hence show that, for a particle of mass m subject to gravitational acceleration

g and an applied force F, the equation of motion in the rotating frame will be

mb̈ = F + mg − 2mω × ḃ︸      ︷︷      ︸
∗

−mω × (ω × b)︸             ︷︷             ︸
∗∗

. [ 2 ]

According to Newton’s second law, the total force F + mg = md2a/dt2. Substituting the result above and

rearranging, [ 2 ]

F + mg = m
d2a
dt2 = mb̈ + 2mω × ḃ + mω × (ω × b)

⇒ mb̈ = F + mg − 2mω × ḃ − mω × (ω × b) .

Explain the significance of the terms marked * and **, and why that marked **

may generally be neglected when the axes are referred to the Earth’s surface. [ 3 ]

The first term is the Coriolis force [0.5] due to conservation of angular momentum as the particle

moves relative to the rotating surface [0.5]. The second term is the centrifugal force [0.5] caused by

the centripetal acceleration required to prevent the particle from flying off in a straight line [0.5]. The

Earth is an oblate spheroid, whose surface is roughly perpendicular to the combination of gravity and

centrifugal force, so local axes are aligned to the resultant force, which includes both terms in the local

‘gravity’ value [1]. [ 3 ]

Show that if wind is to flow undeflected over the surface of the Earth, then there

must be a sideways pressure gradient given by the geostrophic wind condition

dP
dy

= 2ρω sin(α) v

where ρ is the air density, v the wind speed, α the latitude and ω the angular

velocity at which the Earth rotates. [ 3 ]

For undeflected flow, b̈ = 0 [1] and hence, assuming the centrifugal term to be combined into the local

gravity as described above, we find [1]

F + mg = 2mω × ḃ, [ 2 ]
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where F = −∇P results from a gradient in atmospheric pressure P. The vertical component accounts

for the hydrostatic reduction in pressure with altitude, while the sideways (y) component gives, per unit

cross-sectional area, [1]

dP
dy

= 2ρ ĵ′ ·
(
ω × ḃ

)
≡ 2ρω · (ḃ × ĵ′) = 2ρω v sinα. [ 1 ]

Calculate the horizontal distance over which a pressure drop of 400 Pa is

required for a geostrophic wind speed of 13 m s−1 at a latitude of 50◦ N at

sea level. The density of air at sea level may be taken to be 1.225 kg m−3. [ 2 ]

Rearranging the above expression with a pressure difference ∆P over distance ∆y,

∆y =
∆P

2ρω v sinα
=

400 Pa
2 × 1.225 kg m−3 2π

3600 24 s 13 m s−1 sin 50◦
= 225 km. [ 2 ]

[This, happily, is about what is shown on Met. Office synoptic charts.]
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B2. (a) Explain what is meant by the normal mode of an oscillating system. [ 2 ]

A normal mode is a motion in which all parts of the system oscillate with the same single frequency

and (therefore) with a fixed phase relationship between each other. [ 2 ]

(b) Two simple pendulums, each of length l, have bobs of masses m and M.

The pendulums are coupled by a weak spring of spring constant k, as

shown in the diagram below.

If the displacements of the pendulum bobs are x and X, show that, for

small displacements, the motion of the system may be described by

d2

dt2

(
x

X

)
=

(
−
g
l −

k
m

k
m

k
M −

g
l −

k
M

)(
x

X

)
. [ 6 ]

We describe the angles of the pendulums by ϑm and ϑM, the positions of the pendulum bobs by x
and X, and assume small ϑm and ϑM so that cosϑm,M ≈ 1. The equations of motion are hence [ 2 ]

mẍ = −mg sinϑm + k(X − x)

MẌ = −Mg sinϑM − k(X − x)

Writing sinϑm = x/l, sinϑM = X/l, [ 2 ]

mẍ = −m(g/l)x + k(X − x)

MẌ = −M(g/l)X − k(X − x)

so that
d2

dt2

(
x
X

)
=

(
−
g
l −

k
m

k
m

k
M −

g
l −

k
M

)(
x
X

)
[ 2 ]
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(c) Consider the normal modes of this system and find

(i) the corresponding eigenfrequencies; and [ 5 ]

(ii) the corresponding eigenvectors. [ 3 ]

(i) For a normal mode, we may write(
x
X

)
=

(
a
b

)
exp iωt. [ 1 ]

Substituting this into the equation of motion above, we obtain(
ω2 −

g
l −

k
m

k
m

k
M ω2 −

g
l −

k
M

)(
a
b

)
[ 1 ]

hence [ 1 ](
ω2 −

g

l
−

k
m

)(
ω2 −

g

l
−

k
M

)
−

k
m

k
M

= 0

⇒

(
ω2 −

g

l

)(
ω2 −

g

l
−

k
m
−

k
M

)
= 0

from which we obtain the two possible solutions [ 2 ]

ω2 =
g

l

or ω2 =
g

l
+

k
m

+
k
M
.

(ii) When ω2 = g/l, we find (
− k

m
k
m

k
M − k

M

)(
a
b

)
= 0 [ 0.5 ]

for which the solution is a = b and hence the unnormalized eigenvector is

(
1
1

)
. [ 1 ]

When ω2 = g/l + k/m + k/M, we find(
k
M

k
m

k
M

k
m

)(
a
b

)
= 0 [ 0.5 ]

for which the solution is a/M = −b/m and hence the unnormalized eigenvector is

(
M
−m

)
. [ 1 ]

(d) The system is released from rest with m in its equilibrium position and M

displaced a small distance d directly away from the other pendulum. Find

an expression describing the subsequent motion. [ 4 ]
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If we write ω2
1 = g/l, ω2

2 = g/l + k/m + k/M, the general solution for the motion will be of the form(
a
b

)
= α

(
1
1

)
cos(ω1t + ϕ1) + β

(
M
−m

)
cos(ω2t + ϕ2). [ 1 ]

Setting the initial conditions x = 0, X = d, ẋ = Ẋ = 0 for t = 0, we obtain

ϕ1 = 0

ϕ2 = 0

α + Mβ = 0

α − mβ = d

from which

α =
d

1 + m
M

β =
−d

M + m

hence [ 2 ](
a
b

)
=

d
1 + m

M

[(
1
1

)
cos(ω1t) −

1
M

(
M
−m

)
cos(ω1t)

]

or (
a
b

)
=

d M
M + m

(
cos(ω1t) − cos(ω2t)

cos(ω1t) + m
M cos(ω2t)

)
. [ 1 ]
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B3. State the relationship between torque and angular momentum, and explain

what is meant by precession in the context of rotational motion. Give an

example of precession, and state the physical principle from which it results. [ 6 ]

The torque τ applied to a system is equal to the rate of change of its angular momentum L,

τ =
dL
dt
. [ 2 ]

Precession is the variation of the axis of rotation of a spinning body [1] due to the application of a torque

about a different axis [1]. It is apparent in the toppling of a spinning top, the coupling of atomic angular

momenta, and the precession of the Earth’s axis (precession of the equinoxes) around the ecliptic

pole [1]. It results from the conservation of angular momentum [1] in a system in which the precessing

object is coupled to other rotational motions. [ 4 ]

A disc of mass M spins with angular velocity ω about a light axle along its axis

of rotational symmetry, about which the disc has a moment of inertia I. The

combination is suspended by attaching the axle, at a distance a from the disc’s

centre of mass, to a rigid support, and the axle assumes a constant angle α to

the vertical. Show that the moment of the disc’s weight about the support is

Mg a sinα

and that the spinning disc precesses about the support with angular frequency

Ω =
Mg a
Iω

. [ 4 ]

If a is the vector from the pivot to the centre of mass, then the moment of the weight Mg about the pivot

will be [the vector form is not required for the mark]

|a × Mg| = a sinαMg. [ 1 ]

If the spinning disc precesses with angular frequency Ω (ωp in the figure below), then

dL
dt

= Ω × L = ΩL sinα [ 1 ]

where L = Iω is the angular momentum of the spinning disc. Since the moment of the weight is the

torque applied to the spinning disc, this equals dL/dt, so

Mg a sinα = ΩL sinα = ΩIω sinα [ 1 ]

from which

Ω =
Mg a
Iω

. [ 1 ]
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An aircraft’s rate-of-turn indicator comprises a gyroscope whose rotation axis

during straight flight lies athwart the aircraft (i.e. horizontally from left to right),

as shown below. The gyroscope spins within a spring-loaded gimbal that allows

it to rotate about the longitudinal (fore-aft) axis of the aircraft, and a pointer

linked to the gimbal indicates this rotation. If the aircraft heading changes, the

gyroscope exerts a torque that balances the restoring torque from the spring at

an angle proportional to the rate of change of heading.

(Instrument Flying Handbook FAA-H-8083-15)

If the gyroscope spins at 3,000 rpm, its moment of inertia is 1.7 × 10−5 kg m2,

and the spring constant at the pointer is 10−3 N m rad−1, find the angle through

which the pointer turns if the aircraft makes one turn every two minutes. [ 6 ]

The situation is as for the spinning disc, except that in equilibrium the torque τ is provided by the spring,

in such a way that the precession matches the rate of turn Ω of the aircraft. That is, [ 1 ]

τ =

∣∣∣∣dL
dt

∣∣∣∣ = ΩL sinα [ 1 ]

where α ∼ 90◦ is the angle between the gyroscope axis and the vertical axis about which the aircraft

turns. [ 1 ]

[In practical instruments, the gyroscope spin direction is chosen so that the gyroscope axis turns in the

opposite direction to the aircraft, and hence remains roughly horizontal, when the aircraft is banked in

the direction of turn.]

Copyright 2016 c© University of Southampton Page 13 of 17

TURN OVER



14 PHYS2006W1

If the pointer is displaced through an angle ϑ, and the spring exerts a restoring torque of kϑ, where

k = 10−3 N m rad−1, then

ϑ =
τ

k
=

ΩL sinα
k

=
ΩIω sinα

k

=
(2π/120) s−1 × 1.7 × 10−5 kg m2 × (2π × 3 000/60) rad s−1 × sin 90◦

10−3 N m rad−1

= 0.28 rad ≡ 16 deg.

[1 mark per line] [ 3 ]

Explain how the instrument will be affected by rotation about (a) a lateral axis

when the aircraft changes pitch and (b) a longitudinal axis when it rolls. [ 4 ]

(a) There will be no change in the instrument’s indication [1] other than a slight change in the

sensitivity to the rate of turn. Rotation about a lateral axis will merely rotate the instrument about

the gyroscope axis, resulting in a small change in the relative speed of rotation that will quickly be

corrected by the internal stabilization mechanisms. [1] [ 2 ]

(b) There will therefore be no change in the instrument’s indication. [1] Rotation about a longitudinal

axis will rotate the gimbal relative to the instrument; the restoring torque from the spring will cause

a torque upon the gyroscope about a perpendicular axis, which will result in a reaction from the

gyroscope bearings that will cause the gyroscope to precess about the longitudinal axis so as to

reduce the spring torque to zero. [1] [ 2 ]
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B4. A satellite orbits the Earth, subject only to the Earth’s gravitational attraction.

Explain why the vector angular momentum is conserved and why this means

that the orbit lies in a plane. What other quantity or quantities is/are

conserved? [ 5 ]

The gravitational attraction is a central force, so it exerts no torque about the Earth on the satellite [1].

Since the torque defines the rate of change of angular momentum, the angular momentum of the satellite

about the Earth is constant [1]. [ 2 ]

Since the angular momentum L is conserved, and always perpendicular to the position r and its rate of

change ṙ = p/m [1], the satellite’s motion remains in the plane defined by the initial r and p [1]. [ 2 ]

Since the gravitational attraction is a central, spherically symmetric force, the total energy of the satellite

will be conserved. [ 1 ]

A spacecraft is moving in a circular, geostationary orbit of radius 6.6 rE around

the Earth, where rE is the Earth’s radius. A brief impulse from the spacecraft’s

rocket motors changes its direction of motion through an angle α towards the

Earth, without any change in speed. At its closest approach, the new orbit is

4.2 rE from the centre of the Earth.

Sketch the initial and final orbits, and indicate the spacecraft’s velocities just

before and after the rocket impulse. [ 2 ]

[ 2 ]

Find the angle α through which the spacecraft is deflected. [ 9 ]

We take v and r to be the spacecraft’s initial speed and orbit radius, and V and R to be its speed and

radial distance at the perigee of the elliptical orbit. The initial orbit gives us

mv2

r
=

GMm
r2 , [ 1 ]
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while conservation of angular momentum requires

mv cosαr = mVR, [ 1 ]

hence

V =
r
R

cosα v. [ 1 ]

Conservation of energy similarly requires

1
2

mv2 −
GMm

r
=

1
2

mV2 −
GMm

R
, [ 1 ]

hence

1
2
v2 −

1
2

( r
R

cosα
)2
v2 = GM

(
1
r
−

1
R

)
= rv2

(
1
r
−

1
R

)
so [ 2 ]

cosα =
R
r

√
1 − 2r

(
1
r
−

1
R

)
=

R
r

√
2r
R
− 1 = 0.932 [ 2 ]

giving

α = 21.3◦. [ 1 ]

Find the maximum distance of the spacecraft from the Earth’s centre, and the

period of the new orbit. [ 4 ]

The most direct way to solve this is by noting that the semimajor axis a is given by [1]

a = −
GMm

2E

where the total energy E is the same for both orbits [1]. The semimajor axis is hence 2× 6.6rE so, since

the closest approach is 4.2rE, the farthest must be (2 × 6.6 − 4.2)rE = 9.0rE [1]. Since, by Kepler’s third

law, the orbital period is proportional to the semimajor axis length3/2, the period of the new orbit will be

the same as that of the geostationary orbit: 1 day [1].

Without recalling this convenient property, we may determine from the working above,

cosα =
R
r

√
2r
R
− 1 [ 1 ]

Hence

sinα =

√
1 −
(

R
r

)2(2r
R
− 1
)

=

√
1 − 2

R
r

+

(
R
r

)2

=

√[
1 −
(

R
r

)]2

= ±

[
1 −
(

R
r

)]
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so

R = r (1 ∓ sinα) . [ 1 ]

While we have derived this for the perigee radius R, which corresponds to the minus sign, it is also valid

with the plus sign for the apogee, which hence has a radius

R = 6.6rE
(
1 + sin 21.3◦

)
= 9.0 rE. [ 1 ]

Since, by Kepler’s third law, the orbital period is proportional to the semimajor axis length3/2, the period

of the new orbit will be (
4.2rE + 9.0rE

2 × 6.6rE

) 3
2

× 1 day = 1 day! [ 1 ]

[The Earth may be taken to be spherically symmetric, and its atmosphere and

reduced mass effects may be neglected.]

END OF PAPER
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