
UNIVERSITY OF SOUTHAMPTON PHYS2006W1

SEMESTER 2 EXAMINATION 2018-2019

CLASSICAL MECHANICS

Duration: 120 MINS (2 hours)

This paper contains 9 questions.

Answers to Section A and Section B must be in separate answer books

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language dictionary is permitted ONLY IF it is a paper version of a

direct ‘Word to Word’ translation dictionary AND it contains no notes, additions

or annotations.

Copyright 2019 v1 c© University of Southampton Page 1 of 17
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Section A

A1. State the parallel and perpendicular axis theorems, explaining clearly the

situations to which they apply and any terms or symbols used. [ 4 ]

Parallel axis theorem: for any body [0.5], if the moment of inertia ICM is known about an axis through

the centre of mass, then the moment of inertia I about a displaced parallel axis [0.5] will be given by [ 1 ]

I = ICM + M d2,

where M is the total mass of the body and d the displacement of the axes. [ 1 ]

Perpendicular axis theorem: for flat (plate-like) objects [0.5], the moment of inertia I about an arbitrary

axis perpendicular to the plate [0.5] will be given by the sum of the moments of inertia about orthogonal

axes, within (parallel to) the plate, that pass through the same point, e.g. if the plate lies in the x − y
plane, [ 1 ]

I = Ix + Iy,

where Ix and Iy are the moments of inertia about the axes within the plane. [ 1 ]

A2. State Kepler’s laws and outline the physical assumptions upon which they are

based. [ 4 ]

Kepler’s laws of planetary motion are

(a). The orbit of a planet is an ellipse with the Sun at one of its foci [ 1 ]

(b). The line from the Sun to the planet sweeps out equal areas in equal intervals of time [ 1 ]

(c). The square of the orbital period is proportional to the cube of the length of the semi-major axis of

its orbit [ 1 ]

Kepler’s laws assume conservation of energy, conservation of angular momentum, non-relativistic

motion, and Euclidean space; it may also/alternatively be mentioned that they assume gravity to be

a central, conservative force obeying the inverse square law, and that no external forces/torques act. In

the stated form, M � m and any tidal forces or effects of non-sphericity are neglected. [ 1 ]

A3. Define torque, show how it may be expressed as a vector product, and state

how it affects the angular momentum of a body upon which it acts. [ 2 ]
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Hence show that if a particle orbiting a point is subject only to a central force

directed towards that point, its angular momentum is conserved, irrespective of

the shape of the orbit. [ 2 ]

Torque τ is the moment, about a given point, of a force F applied at a relative position r. Mathematically,

τ = r × F. [ 1 ]

Its effect is to change the vector angular momentum L of the object to which it is applied, according to

τ =
d
dt

L. [ 1 ]

For a central force, F is parallel to r (e.g. F = Fr̂), so the torque will be zero (since r × r̂ = 0). [ 1 ]

The angular momentum will hence be constant, so is conserved. [ 1 ]

A4. Give a formula for the reduced mass of a system of two particles of masses m1

and m2. For what situations is it a useful quantity? [ 2 ]

Calculate the reduced mass for the Earth-Moon system, given that the masses

of the Earth and Moon are 5.972 × 1024 kg and 7.346 × 1022 kg respectively. [ 2 ]

The reduced mass

µ =
m1m2

m1 + m2
[ 1 ]

is useful for determining the motions of two particles around each other in the absence of other

neighbouring bodies or external forces. [ 1 ]

For the Earth-Moon system,

µ =
597.2 × 7.346
597.2 + 7.346

× 1022 kg = 7.257 × 1022 kg. [ 2 ]

A5. Explain the physical principles behind Buys Ballot’s law: that, if you stand with

your back to the wind in the northern hemisphere, the atmospheric pressure

will be lower on your left than to your right. [ 4 ]

The rotation of the Earth results in velocity-dependent Coriolis forces upon the atmosphere as it

responds to differences in pressure [1]. These cause any horizontally-moving parcel of air, away from

the pole and equator in the northern hemisphere, to experience a force to its right [1]. For motion along

a straight-ish line, the Coriolis force has to be balanced by a pressure gradient from right to left, so that
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4 PHYS2006W1

there is a greater hydrostatic force upon the right of the parcel than the left [1]. If you have your back to

the wind, you are facing in the direction of motion of the parcel, so the pressure will be lower to your left

than to your right [1]. [ 4 ]
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Section B

B1. (a) Explain what is meant by a normal mode of an oscillating system. [ 2 ]

A normal mode is a motion in which all parts of the system oscillate with the same single frequency

and (therefore) with a fixed phase relationship between each other; the amplitudes may differ, but

maintain the same proportions. [ 2 ]

A bead of mass m slides freely on a smooth circular ring of negligible mass

and radius R, which is attached at its centre to a small hub of mass m. The

ring is free to rotate in its own plane about a fixed axis through a point on its

circumference, and the system makes small oscillations under gravity.

(b) Sketch the system described. [ 2 ]

[ 2 ]

(c) For the ring position shown in your diagram, indicate the point about which

the bead rotates. [ 1 ]

The bead rotates about the centre of the ring, labelled X in the figure above. [ 1 ]

(d) Derive the matrix equation governing the angular coordinates ϑ and ϕ of

the ring relative to the pivot, and bead relative to the ring, respectively,

d2

dt2

(
ϑ

ϕ

)
=
g

R

(
−2 1

2 −2

)(
ϑ

ϕ

)
. [ 6 ]

The bead is supported by a reaction force which, for small angles, will be approximately mg,

directed perpendicular to the ring circumference and hence towards the ring centre X. This force
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has a horizontal component mg sinϕ ≈ mgϕ. Since x ≈ Rϑ and y ≈ Rϕ, Newton’s second law

gives

m
d2

dt2 (x + y) = m R
d2

d2 (ϑ + ϕ) = −mgϕ

hence
d2

dt2 (ϑ + ϕ) = −
g

R
ϕ. [ 2 ]

Since the ring supports the bead, it is itself supported by a reaction force of approximately 2mg,

and is hence similarly subject to a perpendicular force 2mg sinϑ ≈ 2mgϑ, in addition to the weight

of the bead. Since x ≈ Rϑ, we may write

m
d2x
dt2 = m R

d2ϑ

d2 = −2mgϑ + mgϕ

hence
d2ϑ

dt2 =
g

R
(ϕ − 2ϑ) . [ 2 ]

Subtracting the second result from the first, we obtain

d2ϕ

dt2 =
g

R
(2ϑ − 2ϕ) . [ 1 ]

Our two results may now be combined in matrix form,

d2

dt2

(
ϑ

ϕ

)
=
g

R

(
−2 1

2 −2

)(
ϑ

ϕ

)
. [ 1 ]

(Note that, since x ≈ Rϑ and y ≈ Rϕ, the same result is obtained if one works in terms of the

linear horizontal coordinates x and y.)

(e) Hence derive the eigenvalue matrix equation and solve it to determine the

angular frequencies of the two normal modes of the system. [ 5 ]

We assume that normal modes take the form(
ϑ

ϕ

)
=

(
a
b

)
exp(iωt). [ 1 ]

Substituting this into the matrix equation of (d), we find(
a
b

)
(iω)2 exp(iωt) =

g

R

(
−2 1
2 −2

)(
a
b

)
exp(iωt). [ 1 ]

Cancelling terms and rearranging, we obtain(
ω2 −

2g
R

g
R

2g
R ω2 −

2g
R

)(
a
b

)
= 0, [ 1 ]
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which requires that the matrix determinant is zero, i.e.,(
ω2 −

2g
R

)(
ω2 −

2g
R

)
−
g

R
2g
R

= 0

which yields the quadratic equation

(
ω2)2

−
4g
R
ω2 + 2

( g
R

)2
= 0 [ 1 ]

to which the solutions are

ω2 =

4g
R ±

√(
4g
R

)2
− 4 × 2

( g
R

)2

2
=
(

2 ±
√

2
) g

R
.

The eigenfrequencies are hence

ω =

√(
2 ±
√

2
) g

R
. [ 1 ]

(f) Calculate the (unnormalized) eigenvectors associated with each eigen-

value. [ 2 ]

If ω2 = (2 +
√

2)(g/R), our eigenvector equation will be(
(2 +
√

2 − 2) g
R

g
R

2 g
R (2 +

√
2 − 2) g

R

)(
a
b

)
= 0

i.e., equivalent equations
√

2a + b = 0 and 2a +
√

(2)b = 0. It follows that b = −
√

2a and that the

unnormalized eigenvector will be (
a
b

)
=

(
1
−
√

2

)
. [ 1 ]

If ω2 = (2 −
√

2)(g/R), we correspondingly find(
(2 −
√

2 − 2) g
R

g
R

2 g
R (2 −

√
2 − 2) g

R

)(
a
b

)
= 0

i.e., equivalent equations −
√

2a + b = 0 and 2a −
√

(2)b = 0. It follows that b =
√

2a and that the

unnormalized eigenvector will be (
a
b

)
=

(
1
√

2

)
. [ 1 ]

(g) Describe the motions of the ring and bead in each mode. [ 2 ]
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At the lower frequency, the bead and ring move in the same direction, in a symmetric motion

except that the bead moves with a greater amplitude. [ 1 ]

At the higher frequency, the bead and ring move in opposite directions, in an antisymmetric motion

except that the bead again moves with a greater amplitude. [ 1 ]
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B2. (a) Explain what is meant by an object’s moment of inertia about an axis, and

define it mathematically in terms of the distribution of the object’s mass. [ 2 ]

The moment of inertia I is the constant of proportionality between the object’s angular momentum

L and its angular velocity ϑ̇ about that axis,

L = Iϑ̇

and hence represents the reluctance of the object to change its rate of rotation in response to an

applied torque τ (that is, τ = Iϑ̈). [ 1 ]

The moment of inertia I is defined as

I =

∫
object

r2
⊥dm =

∫
object
ρ(r) r2

⊥dV

where dm is an element of mass lying a distance r⊥ from the axis of rotation, ρ(r) is the position-

dependent density and dV an element of volume. [Either expression will suffice.] [ 1 ]

(b) Show that the moment of inertia of a uniform solid cylinder of radius R,

length L and mass M is given by I = 1
2 MR2. [ 4 ]

We divide the cylinder most conveniently into concentric cylindrical shells, taken to be of density

ρ, and thus obtain

I =

∫ R

0
r2ρ(2πrLdr) = 2πLρ

R4

4

where the bracketed term is the volume of a cylindrical shell of radius r, length L and thickness

dr. [ 2 ]

Since the volume of the cylinder will be πR2L, the total mass will be

M = πR2Lρ. [ 1 ]

The moment of inertia is hence

I =
1
2

MR2. [ 1 ]

The ‘bouncing bomb’ used in the ‘Dam Buster’ raids of Operation Chastise was

a cylinder measuring 1.27 m in diameter by 1.52 m in length, with a mass of

4200 kg. It was carried beneath the bomber aircraft with the axis of the cylinder

parallel to the wings, perpendicular to the direction of travel. To stabilize the
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bomb once deployed, it was rotated whilst aboard the aircraft at 500 revolutions

per minute, the sense of rotation being clockwise when viewed from the left of

the aircraft. The aircraft approached its target at a speed of 95 m s−1.

(c) Sketch the situation described. [ 2 ]

[ 2 ]

(d) Calculate the speed relative to the ground of the lowest point of the bomb. [ 1 ]

The speed of the lowest point will be the sum of that of the aircraft and the rotational speed rω,

where r is the bomb radius and ω its angular velocity. With the values given, this yields a speed

95 m s−1 +
1.27

2
m

2π × 500
60

rad s−1 = 128 m s−1. [ 1 ]

(e) Calculate the magnitude and direction of the bomb’s angular momentum. [ 3 ]

Using the result from part (b),

I =
1
2

MR2 =
1
2

4200 kg
(

1.27 m
2

)2

= 850 kg m2. [ 1 ]

The angular momentum L is therefore

L = Iω =
1
2

4200 kg
(

1.27 m
2

)2 2π × 500
60

rad s−1 = 44, 300 kg m2 s−1. [ 1 ]

By the right-hand rule, or by explicitly finding r × p for points in the rotating bomb, we find that

the angular momentum points along the bomb axis to the right – i.e., into the page in the diagram

above. [ 1 ]

To line up for the approach to the target, the bomber aircraft needed to turn to

the right. The pilot therefore lowered the right wing, so that the aircraft initially

rotated about a longitudinal (fore-aft) axis at a rate of 10 deg s−1.
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(f) Calculate the magnitude and direction of the gyroscopic torque exerted

upon the aircraft by the rotating bomb. [ 4 ]

The aircraft rolls with an angular velocity Ω = (2π/360)×10 rad s−1, where lowering the right wing

corresponds to theΩ vector pointing forwards. The torque required to rotate the bomb’s rotational

axis and hence angular momentum L in this way is given by

τ =
dL
dt

= Ω × L. [ 1 ]

With the values given, we hence find

τ =
2π
360
× 10 rad s−1 × 44, 300 kg m2 s−1 τ̂ = 7700 N m τ̂,

where the direction of the torque vector τ̂ is given by (forwards) × (right) – i.e., downwards. [ 2 ]

To balance this, the torque upon the aircraft will be 7700 N m upwards. [ 1 ]

(g) What effect will this torque have had upon the aircraft? [ 2 ]

The torque will cause the aircraft to yaw, about a vertical axis, to the left – i.e., the opposite

direction from the intended turn. [ 2 ]

(h) How large a force would need to be applied to the tail of the aircraft to

counteract this effect? You may assume the tail to be about 11 m from the

centre of mass of the aircraft. [ 1 ]

The torque τ could be counteracted by the application of a force F at a distance d where τ = Fd,

so the required force will be

F =
τ

d
=

7700 N m
11 m

= 700 N. [ 1 ]

(i) In which direction should this force be applied? [ 1 ]

To produce a downward torque vector, the force should push the tail of the aircraft to the left. [ 1 ]
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B3. (a) State the relationship between the acceleration g due to gravity at the

Earth’s surface, Newton’s gravitational constant, and the mass and radius

of the Earth (assuming it to be spherically symmetric). Define any symbols

used. [ 2 ]

g =
GM
R2

[ 1 ]

where G is Newton’s gravitational constant, M is the Earth’s mass and R the Earth’s radius. [ 1 ]

A Galileo GNSS satellite is launched by rocket into orbit around the Earth. After

the first boost stage, the rocket is 1130 km above the Earth’s surface and has

a velocity of 9.2 km s−1 perpendicular to a line from the Earth’s centre.

(b) Sketch the situation described, and the orbit established after the first

boost stage. [ 3 ]

[ 3 ]

(c) Show, by considering two conservation laws, that the furthest distance of

the satellite from the Earth’s centre during the subsequent orbital motion

may be written as

ra =
rp

2GM
rpv2

p
− 1

,

where G is the gravitational constant, M the mass of the Earth, and rp and

vp are respectively the radial distance from the centre of the Earth and the

rocket’s velocity immediately after the first boost stage. [ 8 ]
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For conservation of angular momentum,

rpvp = rava [ 1 ]

and for conservation of energy

m
(

1
2
v2

p −
GM
rp

)
= m

(
1
2
v2

a −
GM
ra

)
, [ 1 ]

where M and m are the masses of the Earth and rocket respectively, and rp, vp, ra and vp are the

distances and velocities at the perigee and apogee as shown in the diagram.

To find ra, we combine these expressions to eliminate va:

va =
rpvp

ra
[ 1 ]

so
1
2
v2

p −
GM
rp

=
1
2

(
rpvp

ra

)2

−
GM
ra

. [ 1 ]

Collecting terms in vp and GM,

1
2
v2

p

[
1 −
(

rp

ra

)2
]

= −GM
(

1
ra
−

1
rp

)
[ 1 ]

hence

v2
p
(
r2

a − r2
p
)

= −2GM
ra

rp

(
rp − ra

)
[ 1 ]

so

v2
p
(
ra + rp

)
= 2GM

ra

rp
. [ 1 ]

Collecting terms in ra and rearranging now yields

ra =
rpv

2
p

2GM
rp
− v2

p
=

rp
2GM
rpv2

p
− 1

. [ 1 ]

(d) By expressing GM in terms of the Earth’s radius rE and the gravitational

acceleration g at its surface, show that the furthest distance of the satellite

may be written as

ra =
rp

2g r2
E

rpv2
p
− 1

. [ 1 ]

We use the result of part (a) to write g = GM/r2
E , where rE is the Earth’s radius, and hence

GM = g r2
E

giving

ra =
rpv

2
p

2GM
rp
− v2

p
=

rp
2g r2

E
rpv2

p
− 1

. [ 1 ]
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(e) Calculate the numerical value of this distance. [ 1 ]

With the values given, this yields

ra =
(6370 + 1130) km

2×9.81 m s−2×(6370×103 m)2

(6370+1130)×103 m× (9200 m s−1)2 − 1
= 29 500 km. [ 1 ]

(f) Derive the value of the eccentricity of the orbit. [ 5 ]

In terms of the length a of the semi-major axis, and the eccentricity e,

rp = (1 − e)a;

and

ra = (1 + e)a. [ 1 ]

We eliminate a by writing e.g.,

a =
rp

1 − e
[ 1 ]

and substituting to give

ra =
1 + e
1 − e

rp

hence

(1 − e)ra = (1 + e)rp [ 1 ]

so, collecting terms in e,

e(ra + rp) = ra − rp

and thus

e =
ra − rp

ra + rp
. [ 1 ]

With the values given,

e =
29500 − (6370 + 1130)
29500 + (6370 + 1130)

= 0.595. [ 1 ]

The Earth’s radius may be taken to be 6370 km, and gravitational acceleration

at the Earth’s surface to be 9.81 m s−1.
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B4. (a) Show that, if a fixed-length vector A rotates with angular velocity ω about

an axis defined by the vector ω̂, and we define ω ≡ ωω̂, then

dA
dt

= ω × A. [ 4 ]

From a suitable diagram, considering the magnitude and direction of the change of vector, we see

that the infinitessimal change dA resulting from rotation of A through an infinitessimal angle dϕ
about ω̂ will be

dA = ω̂ × Adϕ. [ 2 ]

Dividing by an infintessimal timestep dt and noting that the angular velocity ω ≡ dϕ/dt,

dA
dt

= ω̂ × A
dϕ
dt

= ωω̂ × A = ω × A. [ 2 ]

The unit vectors î′, ĵ′ and k̂′ of a rotating coordinate frame rotate with angular

velocity ω about an axis ω̂, so that a vector a ≡ aiî + a jĵ + akk̂ in an inertial

frame
{

îĵk̂
}

may be written at a given time as b ≡ biî′ + b jĵ′ + bkk̂′.

(b) Show that
da
dt

= ḃ + ω × b

and hence that
d2a
dt2 = b̈ + 2ω × ḃ + ω × (ω × b) ,

where ḃ ≡ ḃiî′ + ḃ jĵ′ + ḃkk̂′, b̈ ≡ b̈iî′ + b̈ jĵ′ + b̈kk̂′, and ḃi ≡ dbi/dt etc. [ 6 ]

In an inertial frame, the unit vectors of the rotating frame change with time, so the vector must be

differentiated as a product [1 mark per line]: [ 3 ]

da
dt

=

(
dbi

dt
î′ + bi

dî′

dt

)
+

(
db j

dt
ĵ′ + b j

dĵ′

dt

)
+

(
dbk

dt
k̂′ + bk

dk̂′

dt

)
= ḃi î′ + ḃ jĵ′ + ḃkk̂′ + biω × î′ + b jω × ĵ′ + bkω × k̂′

= ḃi î′ + ḃ jĵ′ + ḃkk̂′ + ω × b ≡ ḃ + ω × b.

Differentiating a second time, noting that the vectors a and b are equivalent [1 mark per line], [ 3 ]

d2a
dt2 =

(
b̈i î′ + ḃi

dî′

dt

)
+

(
b̈ jĵ′ + ḃi

dî′

dt

)
+

(
b̈kk̂′ + ḃi

dî′

dt

)
+ ω ×

da
dt

= b̈i î′ + b̈ jĵ′ + b̈kk̂′ + ḃiω × î′ + ḃ jω × ĵ′ + ḃkω × k̂′ + ω ×
(
ḃ + ω × b

)
= b̈ + ω × ḃ + ω × ḃ + ω × (ω × b) = b̈ + 2ω × ḃ + ω × (ω × b) .

Copyright 2019 v1 c© University of Southampton Page 15 of 17

TURN OVER



16 PHYS2006W1

(c) Hence show that, for a particle of mass m subject to gravitational

acceleration g and an applied force F, the equation of motion in the rotating

frame will be

mb̈ = F + mg − mω × (ω × b) − 2mω × ḃ. [ 2 ]

According to Newton’s second law, the total force F + mg = md2a/dt2. Substituting the result

above and rearranging, [ 2 ]

F + mg = m
d2a
dt2 = mb̈ + 2mω × ḃ + mω × (ω × b)

⇒ mb̈ = F + mg − 2mω × ḃ − mω × (ω × b) .

The vibrating structure gyroscope comprises a miniature tuning fork, which may

be taken to lie in the x′−z′ plane with the z′-axis following the axis of symmetry.

The prongs of the tuning fork are driven in opposite directions in the x′ direction

so that their displacements at time t are x′ = ±x′0 sin(ω0t).

(d) Show that, if the gyroscope rotates about an angular velocity vectorΩ with

components Ωx′, Ωy′, Ωz′, then the prongs will experience Coriolis forces

FCor = ∓2mx′0ω0 cos(ω0t)Ω × î′,

where m is the effective mass of each prong. [ 3 ]

The Coriolis force is the final, velocity-dependent term in the expression of part (c). Writing the

prong positions as

b = ±b0 + x′ î′ [ 1 ]

where the vector joining the rest positions of the prongs is b0, we find

ḃ = ±x′0ω0 cos(ω0t)î′ [ 1 ]

and hence the Coriolis forces

−2mΩ × ḃ = ∓2mx′0ω0 cos(ω0t)Ω × î′. [ 1 ]
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(e) Hence show that in the y′ direction, the relative displacement of the prongs,

neglecting any resonance effects, will be

∆y′ =
4x′0
ω0

Ωz′ cos(ω0t). [ 3 ]

From our answer to (d), the Coriolis acceleration will be

−2Ω × ḃ = ∓2x′0ω0 cos(ω0t)Ω × î′. [ 1 ]

Integrating this twice and evaluating the vector product, we obtain the displacement due to the

Coriolis force,

∓2x′0ω0

"
cos(ω0t) dt dt Ω × î′ = ±

2x′0
ω0

cos(ω0t) Ω × î′ = ±
2x′0
ω0

cos(ω0t) Ωz′ ĵ′. [ 1 ]

The relative displacement in the y′ direction of the two prongs will be the difference between these

two displacements, i.e.,

∆y′ =
4x′0
ω0

Ωz′ cos(ω0t). [ 1 ]

(f) If the device is driven at a frequency of 15 kHz with amplitude 5 µm, find

the amplitude of the relative motion when the device is used to measure

the rotation of a Formula 1 engine at 10,000 rpm (revolutions per minute). [ 2 ]

With the values given, the amplitude of the relative motion will be

4x′0
ω0

Ωz′ =
4 × 5 × 10−6 m

2π × 15 000 rad s−1
2π × 10 000

60 s
= 220 nm. [ 2 ]

END OF PAPER
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