coherent amplification in laser cooling and trapping

University of Southampton

Tim Freegarde¹, Geoff Daniell¹, Danny Segal²

v University of Southampton 2001 S. Imperial College London

Imperial College London

¹School of Physics & Astronomy, University of Southampton ²QOLS, Imperial College, London

Optical scattering forces, such as for Doppler cooling and magneto-optical trapping, may be **amplified** without further spontaneous emission using the state-dependent deflection by a pulsed or chirped laser field. Amplified forces allow more **compact deceleration** of beams with **reduced transverse heating**, and suit species with **open level schemes** where losses due to spontaneous emission and re-pumping would otherwise dominate the cooling process itself.

OPTICAL SCATTERING FORCES

MOT and Doppler cooling forces use the photon impulse accompanying position/velocity-dependent absorption

	scattering	amplified		
max impulse	ħk	2nħk	per lifetime	
spont. emission	one	one	per lifetime	

AMPLIFIED FORCES

By separating the selective excitation from the impulse, the interaction with counter-propagating, interleaved trains of population-inverting π -pulses has been used^{1,2} or proposed to give a significant enhancement to the scattering force. Applications include efficient momentum transfer for beam deflection^{3,4}, increasing the path separation in atom interferometers⁵, and an amplified cooling mechanism⁶.

References

- 1 B. Nölle et al., Europhys. Lett. 33, 261 (1996).
- 2 V. S. Voitsekhovich et al., JETP Lett. 59, 408 (1994).
- 3 M. Cashen et al., J. Opt. B. 4, 75 (2002)
- 4 M. Cashen and H. Metcalf, J. Opt. Soc. Am. B. 20, 915 (2003)
- 5 D. S. Weiss, B. C. Young and S. Chu, Appl. Phys. B. 59, 217 (1994)
- 6 J. S. Bakos et al., Phys. Rev. A. 53 2885 (1996)

ANALYSIS

We divide the sequence into pairs of counter-propagating pulses. Depending upon the atomic state at the start of the period, and whether spontaneous emission occurs, there are five possible outcomes, shown below:

and a start of the s							and a second second second
		↑ ↓		impulse Δp ($\hbar k$)	heating (photons)	probability	
	$ g\rangle$		$ g\rangle$	+2	0	1-q	
	$ g\rangle$	J	(e)	0	1	q(1-q)	
	g)		← g⟩	0	2	q^2	
	e)		— e)	-2	0	1-q	
	$ e\rangle$		< y)	-2	1	q	
		ni n	+1				

This ultimately gives a mean impulse after *n* pulse pairs

$$I_n = 2 \left\{ \frac{1-q}{2-q} - e_0 \right\} \frac{(1-q)^{2n} - 1}{(1-q)^2 - 1} (2-q)^{2n} + \frac{1}{2} \left(\frac{1-q}{2} - \frac{1}{2} \right) \left(\frac{1-q}{2} - \frac{1-q}{2} \right$$

where q is the spontaneous emission probability and e_0 the initial excitation. The variance is given by

$$\begin{split} \Delta_n^2 &= \Delta_0^2 - \frac{4}{q^2} \left\{ \frac{1-q}{(2-q)^2} [q^2 - 3q + 3] - \frac{q^2 - 2q + 2}{2-q} e_0 + e_0^2 \right\} \\ &+ \frac{8(1-q)}{q(2-q)} n + \frac{4(1-q)^{2n}}{q^2} \left\{ 1-q - (2-q)e_0 + 2e_0^2 \right\} \\ &- \frac{4(1-q)^{4n}}{q^2} \left\{ \frac{(1-q)^2}{(2-q)^2} - 2\frac{1-q}{2-q}e_0 + e_0^2 \right\}. \end{split}$$

and the probable number of spontaneous decays is

$$D_n = rac{2q}{2-q}n + q^2\left(rac{1-q}{2-q} - e_0
ight)rac{(1-q)^{2n}-1}{(1-q)^2-1}.$$

giving a combined heating term

OPTIMUM COOLING STRATEGY

For a given initial velocity distribution, we may use our results to determine the optimum duration of pulse sequence with which to amplify a velocity-selective excitation: a combination of best overlap and minimum heating.

For the regime in which spontaneous emission may be neglected, the optimum sequence length reduces an initially Gaussian distribution to 36% of its initial temperature within a single excited state lifetime.

LOGARITHMIC COOLING SERIES

A series of sequences, each tailored to the starting temperature, can thus reduce the number of lifetimes required for a given cooling impulse to its logarithm: a distribution with a width of 10,000 $\hbar k$ can be cooled to its recoil limit in as few as **10 sequences**. The number of **spontaneous decays** is reduced by the same **factor of 1000**.

APPLICATIONS

- amplified force faster deceleration of atomic beams – cooling on intercombination lines
- reduced transverse heating
 atomic beams
- reduced spontaneous emission

 molecules and open level schemes