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Optical scattering forces, such as for Doppler cooling and magneto-optical trapping, may be amplified without further OPTIMUM COOLING STRATEGY
* spontaneous emission using the state-dependent deflection by a pulsed or chirped laser field. Amplified forces allow more
compact deceleration of beams with reduced transverse heating, and suit species with open level schemes where For a given initial velocity distribution, we may use our

losses due to spontaneous emission and re-pumping would otherwise dominate the cooling process itself. results to determine the optimum duration of pulse sequence
[ s Y with which to amplify a velocity-selective excitation: a
combination of best overlap and minimum heating.

OPTICAL SCATTERING FORCES ANALYSIS

MOT and Dopp|er cooling forces use the photon impulse We divide the sequence into pairs of counter-propagating pulses. Depending
: sionivelocity-d dont ab ti upon the atomic state at the start of the period, and whether spontaneous

accompanying position/velocity-aepenaent absorption emission occurs, there are five possible outcomes, shown below:
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AMPLIFIED FORCES For the regime in which spontaneous emission may be

By separating the selective excitation from the impuise, the This ultimately gives a mean impulse after n pulse pairs neglected, the optimum sequence length reduces an initially
interaction with counter-propagating, interleaved trains of & A-g>_1 Gaussian distribution to 36% of its initial temperature
population-inverting -pulses has been used'? or proposed - }W@ s within a single excited state lifetime.

to give a significant enhancement to the scattering force. where g is the spontaneous emission probability and e, the initial excitation.

Applications include efficient momentum transfer for beam The variance is given by LOGARITHMIC COOLING SERIES
deflection®#, increasing the path separation in atom Ao i{ - U e +c§} ) . _
interferometers, and an amplified cooling mechanismeé. ' ple oo 2= A series of sequences, each tailored to the starting
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by lapHaom v g 2 recoil limit in as few as 10 sequences. The number of
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