
PHYS1015 MOTION AND RELATIVITY

JAN 2015 EXAM ANSWERS

Section A

A1. (Based on previously seen problem)

Displacement as function of time:

x(t) = A sinωt

Frequency f = ω/2π.

Velocity of mass is

v(t) =
dx
dt

= Aω cosωt

Maximal velocity is therefore Aω and is obtained when total energy E is equal to

kinetic energy,

E =
1
2

mv2 =
1
2

mA2ω2 .

[ 2 ]

Alternatively for the 2 marks: recall that E = 1
2kA2 for total energy and that

k = mω2 for oscillating spring.

Hence

A2 =
2E

mω2 =
2E

m(2π f )2

or

A =
1

2π f

√
2E
m
.

[ 1 ]



Putting in values we find

A = 0.16 m .

[ 1 ]



A2. (Similar to example given in workshops)

Weight of skydiver is mg. [ 1 ]

Forces balance at terminal velocity, since there is no acceleration.

Hence drag force also has magnitude mg and is opposite to direction of travel. [ 1 ]

Work done by drag force over distance d is therefore −mgd.

Power is rate of doing the work hence P = −mgv. [ 1 ]

Putting in numbers we find P = −37 kW. [ 1 ]



A3. (Unseen problem)

Relativistic energy E = γmc2, [ 1 ]

where γ = 1√
1−v2/c2

. [ 1 ]

Rest energy is mc2 and kinetic energy is E − mc2 = 0.99 MeV. [ 1 ]

We have γ = E/(mc2) so

1
1 − v2

c2

=
E2

m2c4 hence
v2

c2 = 1 −
m2c4

E2

and finally
v

c
=

√
1 −

m2c4

E2 = 0.94

[ 1 ]



A4. (Bookwork)

Magnitude of force on object at radius r is

GMm
r2 .

[ 1 ]

Work done by gravity moving mass from position r0 to position r is

W = −

∫ r

r0

dr′
GMm
(r′)2 = GMm

[
1
r′

]r

r0

.

[ 1 ]

and potential energy is defined to be U(r) − U(r0) = −W. [ 1 ]

Taking reference point r0 to be at infinite separation and declaring U(∞) = 0 we

have

U(r) = −
GMm

r
.

[ 1 ]



A5. (Based on previously seen problem in lectures)

Relativistic Doppler formula:

ν′ = ν0

√
1 − ve/c
1 + ve/c

where ν0 and ν′ are emitted and observed frequencies. Hence for wavelengths:

λ′

λ0
=

√
1 + ve/c
1 − ve/c

[ 1 ]

Hence

λ2
0(1 + ve/c) = (λ′)2(1 − ve/c)

[ 1 ]

So that

(ve/c)(λ2
0 + (λ′)2) = (λ′)2 − λ2

0

[ 1 ]

or

(ve/c) =
(λ′)2 − λ2

0

λ2
0 + (λ′)2 ≈ 0.09

[ 1 ]



Section B

B1

(a) (bookwork)

In an elastic collision the total kinetic energy is conserved (Or: relative velocity

after collision is opposite to that before). [ 1 ]

In an inelastic collision the total kinetic energy is not conserved. [ 1 ]

After a totally inelastic collision the two bodies move with common velocity. [ 1 ]

(b) (similar to problem in lectures)

(i) Conservation of momentum: m1u = m1v1 + m2v2,

where v1 and v2 are the velocities of the two balls in the positive x direction. [ 1 ]

Conservation of kinetic energy: 1
2m1u2 = 1

2m1v
2
1 + 1

2m2v
2
2. [ 1 ]

Rearranging KE equation: m1(u2 − v2
1) = m2v

2
2,

hence m1(u − v1)(u + v1) = m2v
2
2. [ 1 ]

Rearranging momentum equation: m1(u − v1) = m2v2. [ 1 ]

Divide to get u + v1 = v2. [ 1 ]

Put back in to momentum equation: m1(u − v1) = m2(u + v1).

Solve for v1: i.e. v1(m1 + m2) = u(m1 − m2)

so v1 = u
(

m1−m2
m1+m2

)
. [ 1 ]

Moves in positive x direction if m1 > m2 and in negative x direction if m1 < m2. [ 1 ]

(ii) We had v2 = u + v1. But we know v1 in terms of the initial velocity and the

masses. So substitute in:

We have: v2 = u
(

1 + m1−m2
m1+m2

)
= 2u m1

m1+m2
[ 1 ]

Kinetic energy of Ball 2 after collision is 1
2m2v

2
2 = 2 u2m2

1m2

(m1+m2)2 . [ 1 ]



(iii) Final height up incline z reached when KE is converted to potential energy

U = m2gz. [ 1 ]

So we need m2gz = 2 u2m2
1m2

(m1+m2)2 . [ 1 ]

Hence z = 1
2
v2

2
g

=
2u2m2

1
g(m1+m2)2 . [ 1 ]

(c) (Unseen problem)

Totally inelastic means the balls move with common velocity after collision. [ 1 ]

Momentum conservation: m1u = (m1 + m2)v for common velocity v afterwards. [ 1 ]

Hence v = um1
m1+m2

.

Potential energy of combined ball at top of incline is (m1 + m2)gh. [ 1 ]

We need kinetic energy just after collision equal to (or greater than) this.

i.e. 1
2(m1 + m2)v2 = (m1 + m2)gh, i.e. v2 = 2gh [ 1 ]

i.e u2m2
1

(m1+m2)2 = 2gh

i.e. u = (1 + m2/m1)
√

2gh. [ 1 ]



B2

(a) (bookwork)

Newton’s second Law: F = ma. [ 1 ]

Gravitational force on projectile is F = −mgk̂ with k̂ a vertical unit vector. [ 1 ]

Hence acceleration a = −gk̂. [ 1 ]

Integrating once we find velocity v = v0 − gtk̂. [ 1 ]

Integrating again we find position r = r0 + v0t − 1
2gt2k̂. [ 1 ]

We can set initial position r0 = 0. [ 1 ]

Projecting onto horizontal component x(t) = v0t cos θ. [ 1 ]

and vertical component z(t) = v0t sin θ − 1
2gt2. [ 1 ]

(b) (bookwork)

Time of flight is time when height vanishes (but not t = 0), hence v0 sin θ = 1
2gt. [ 1 ]

Rearranging we have t = 2v0 sin θ
g

. [ 1 ]

(c) (Unseen problem)

(i) Maximum height obtained at half the total time of flight, i.e. at t = v0 sin θ
g

. [ 1 ]

At this time the height is

zmax =
v2

0 sin2 θ

g
−

1
2
v2

0 sin2 θ

g
=

1
2
v2

0 sin2 θ

g
.

[ 1 ]

Hence (using sin(π/6) = 1/2) we have v2
0 = 8gzmax or v0 =

√
8gzmax ≈ 100 m/s. [ 1 ]

Total distance travelled is value of x at total time of flight, i.e.

xmax =
2v2

0 sin θ cos θ
g

=
v2

0 sin 2θ
g

.

[ 1 ]

Hence we have xmax = 8zmax sin 2θ = 4
√

3zmax = 60
√

3 m ≈ 901 m . [ 1 ]

(ii) Now elevation angle θ = 0. So we can use simplified equations for x and z

from before:



x(t) = v0t.

and

z(t) = −1
2gt2 [ 1 ]

We want the distance travelled when z(t) = −zmax with zmax the same as before. [ 1 ]

When z(t) = −zmax we have

t =
√

2zmax
g

. [ 1 ]

and hence horizontal distance travelled x = v0

√
2zmax
g

. [ 1 ]

Putting in numbers:

x = 520 m. [ 1 ]



B3 (unseen problem)

(a)

(i) Let S be the laboratory reference frame and S ′ the electron beam frame.

S ′ moves in the direction of the electrons at v = 0.995c. [ 1 ]

The muon velocity in frame S is u = 0.9c.

For the muon in the laboratory reference frame we have:

γ = 1√
1− u2

c2

= 2.3. [ 1 ]

Thus its momentum in the S frame is p = γmu [ 1 ]

Hencep = (2.3)(105.7 MeV/c2)(0.9c) = 218 Mev/c [ 1 ]

(ii) To find the momentum in the electron-beam reference frame we use the

velocity transformation equation to find the muon’s velocity in frame S ′:

u′ = u−v
1− uv

c2
= 0.99c−0.995c

1−(0.9c)(0.995c)/c2 = −0.91c [ 2 ]

In the laboratory frame the faster electrons are overtaking the slower muon.

Hence the muon’s velocity in the electron-beam frame is negative.

γ′ for the muon in frame S’ is:

γ′ = 1√
1−0.912 = 2.41 [ 1 ]

The muon’s momentum in the electron-beam reference frame is

p′ = γ′mu′ = (2.41)(105.7 MeV/c2)(−0.91c) = −231 MeV/c [ 1 ]

(b)

(i) In the CM frame both incoming protons have equal & opposite velocities and

therefore momenta i.e. the total momentum is zero. [ 2 ]

Relativistic energy E of one of the protons is γmpc2. Total energy is twice this.

Energy conservation: 2E = 2γmpc2 = 2mpc2 + mπc2

hence energy of each of the protons is E = mpc2 + 1
2mπc2 ≈ 1010 MeV [ 2 ]

Since E = γmpc2, we have γ = 1 + mπc2

2mpc2 = 1 + 135
2×938 = 1.072



and hence v = 0.36c [ 2 ]

(ii) Now one of the protons is at rest. So the velocity of the moving proton is

found by relativistically adding the velocity in the centre of mass frame (0.36c) to the

relative velocity between frames (also 0.36c):

u′ = u−v
1− uv

c2
= 0.36c+0.36c

1+0.362 = 0.64c [ 2 ]

We have γ = 1/
√

1 − 0.642 = 1.3 [ 2 ]

And for kinetic energy we have:

K = (γ − 1)mpc2 = 0.3 × 938 = 280 MeV [ 2 ]

Alternatively for the 6 marks:

In new frame collision products are moving with velocity v. [ 1 ]

Momentum p′ of moving proton before collision is constrained by momentum

conservation p′ = γ(2mp + mπ)v. [ 1 ]

Energy of incoming proton E′ constrained by invariance of E2 − p2c2, i.e.

we have E2 − p2c2 = (E′)2 − (p′)2c2 [ 2 ]

and hence (E′)2 = E2 − p2c2 + (p′)2c2 = E2 − (γmpv)2c2 + (γ(2mp + mπ)v)2c2.

which gives E′ = 1218 MeV. [ 1 ]

Kinetic energy K = E − mpc2 = 1218 − 938 = 280 MeV. [ 1 ]
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B4

(a)(Bookwork)

Postulate 1. The laws of physics are the same in any inertial frame. [ 1 ]

Postulate 2. The speed of light is the same in any inertial frame. [ 1 ]

An inertial frame is one in which Newton’s first law holds, i.e. a body continues in

uniform motion unless acted upon by an external force. [ 2 ]

(b)(Bookwork)

Lorentz transformation:

Orthogonal directions: y′ = y and z′ = z [ 1 ]

t′ = γ(t − vx/c2) [ 2 ]

x′ = γ(x − vt) [ 2 ]

where γ = 1√
1− v2

c2

[ 1 ]

(c) (Unseen problem)

Let the first event occur at x = t = 0 in S (and hence at x′ = t′ = 0 in S ′). [ 1 ]

The second event occurs at x = ∆x in S and at t′ = 0 in S ′. [ 1 ]

Using Lorentz transformation above we then have 0 = γ(t − v∆x/c2). [ 1 ]

Hence the two events are separated in time in S by time t = v∆x/c2. [ 1 ]

(d) (Unseen problem)

Signals are simultaneous in S ′ and separated in S , as in part (c):

Earlier event is A at origin x = t = 0. [ 1 ]

Later event is B at x = ∆x and time t = v∆x/c2 in S . [ 1 ]

Hence v = tc2/(∆x) = 90 m/s (= 3 × 10−7c). [ 1 ]

S ′ was moving in positive x direction hence lander is flying in direction from A

towards B. [ 1 ]

Yes - a pilot travelling faster in the same direction would see B occur first. [ 2 ]

Copyright 9999 c© University of Southampton Page 13 of 13



END OF PAPER


