
PHYS2003 - Quantum Physics - 2014/15 Semester 1 Examination
Outline Solutions
C.T. Sachrajda

I have tried to mark those parts of questions which are bookwork, i.e. where the solutions have
been presented almost identically in the lectures. The remaining questions are intended to be
applications of bookwork. Similar, but not identical, questions have either been covered in the
lectures or on the problem sheets. There should be no surprises for those students who have fully
engaged with the course.

A1 (i) I ask this to make the students think about dimensions. So often they give solutions to part
(ii) which are wrong because of a slip, but the presence of a mistake should be obvious because
of dimensions.

Since the exponent must be dimensionless a has the dimensions of [L]. 1 mark
The integral of ψ∗ψ over all space is 1, and so A2 has the dimensions of [L]−3 and hence A has
dimensions of [L]−3/2. 1 mark
(ii) The normalization condition is that

A2×4π×
∫

∞

0
dr r2e−2r/a = 1 ,

where the 4π comes from the angular integral. 2 marks
I imagine that some students will get some aspect of this wrong.

Using the given integral,

A2×4π×2!×
(a

2

)3
= 1 ,

so that A2×πa3 = 1 and

A =
1√
πa3

.

Correct dimensions! 1 mark
A2 Bookwork, in the sense that the students are asked to demonstrate that they understand a
concept presented in the lectures.

The students are simply required to state (in some way) that∫ a

0
dxψ

∗
n (x)ψm(x) = δnm .

2 marks if it is clear that the integral is zero if n 6= m and 1 mark for stating that the integral is
1 if n = m.
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A3 Bookwork, in the sense that the students are asked to demonstrate that they understand a
concept presented in the lectures.

Let f be any function in the Hilbert space of square integrable functions. Q̂ is Hermitian if∫
∞

−∞

d3x (Q̂ f (x))∗ f (x) =
∫

∞

−∞

d3x f ∗(x) Q̂ f (x) ,

for all functions f (x) in the Hilbert space. 4 marks
There are many equivalent ways of saying this, most common is to say∫

∞

−∞

d3x (Q̂g(x))∗ f (x) =
∫

∞

−∞

d3x g∗(x) Q̂ f (x) ,

for all f and g in the Hilbert space. This is fine.
1 mark will be lost of there is no mention of the Hilbert space and 1 if the ∗ is missing.

A4 (i) By simple matrix multiplication

Sxχ =
h̄
2
× 1√

2

(
−1
1

)
=− h̄

2
χ ,

so that χ is an eigenstate of Sx with eigenvalue −h̄/2. 2 marks
(ii) We rewrite χ in terms of the eigenstates of Sz:

χ =
1√
2

((
1
0

)
−
(

0
1

))
,

where the two terms in the brackets are eigenvectors of Sz with eigenvalues ±h̄/2. Thus the
probability of finding +h̄/2 is (1/

√
2)2 = 1/2. 2 marks

This is the last topic covered in the course and some fraction of the students will not have mas-
tered this.

A5 The main thing I would like to check is that the students know that

〈V (x)〉=
∫

∞

−∞

dx ψ
∗
0 (x)V (x)ψ0(x) .

2 marks
The remaining 2 marks are obtained for the evaluation:

〈V (x)〉 =
(mω

π h̄

)1
2 × 1

2
mω

2×
∫

∞

−∞

dx x2 exp
[
−mω

h̄
x2
]

=
1
2

m
3
2 ω

5
2

√
π h̄
×2×

√
π×2× 1

23 ×
(

h̄
mω

)3
2

=
h̄ω

4
.

2 marks
This is a consequence of the virial theorem for the HO, in which the expectation values of the
kinetic and potential energies are equal and the sum is the famous h̄ω/2.
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B1 (i) This was done explicitly in the lectures but I expect a variety of partial derivations.

We start with
〈x〉=

∫
∞

−∞

dx Ψ
∗(x, t)xΨ(x, t) , 1 mark

so that

d〈x〉
dt

=
∫

dx x
∂

∂ t
{Ψ∗(x, t)Ψ(x, t)} ,

=
∫

dx x
{

∂Ψ∗(x, t)
∂ t

Ψ(x, t)+Ψ
∗(x, t)

∂Ψ(x, t)
∂ t

}
. 1 mark

Here and below the limits of integration are implicitly taken to be ±∞.

We now use the Schrödinger equation 2 marks

ih̄
∂Ψ

∂ t
=− h̄2

2m
∂ 2Ψ

∂x2 +V Ψ ,

to replace the time derivative by space derivatives (being careful with the signs when taking the
complex conjugate)

d〈x〉
dt

=
∫

dx x
{
−i

h̄
2m

∂ 2Ψ∗

∂x2 Ψ− iV
h̄

Ψ
∗

Ψ+ i
h̄

2m
Ψ
∗ ∂ 2Ψ

∂x2 +
iV
h̄

Ψ
∗

Ψ

}
= −i

h̄
2m

∫
dx x

{
∂ 2Ψ∗

∂x2 Ψ−Ψ
∗ ∂ 2Ψ

∂x2

}
= −i

h̄
2m

∫
dx x

∂

∂x

{
∂Ψ∗

∂x
Ψ−Ψ

∗∂Ψ

∂x

}
(using the given identity)

= i
h̄

2m

∫
dx
{

∂Ψ∗

∂x
Ψ−Ψ

∗∂Ψ

∂x

}
(using integration by parts)

= −i
h̄
m

∫
dx Ψ

∗∂Ψ

∂x
(using integration by parts on first term of previous line)

We are allowed to use integration by parts because a normalizable wave function vanishes at
x =±∞ .
3 marks for this algebra - 1 mark for first two lines, the middle line and the last two lines.

We have derived an expression for the expectation value of the velocity. Using p = mv we have

〈p〉=
∫

dx Ψ
∗
(
−ih̄

∂

∂x

)
Ψ≡

∫
dx Ψ

∗ P̂Ψ ,

where

P̂ =−ih̄
∂

∂x
is the momentum operator. 3 marks - 2 for understanding and 1 for correct algebra.
I have used P̂ here for the operator but simply p in the question.
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(ii) Bookwork

For any function f (x) in the Hilbert space

xp f (x) =−ih̄x f ′(x) ,

where the prime denotes differentiation w.r.t. x. On the other hand

px f (x) =−ih̄
∂

∂x
(x f ) =−ih̄ f − ih̄x f ′ .

Thus
[x, p] f ≡ (xp− px) f = ih̄ f .

Since this is true for all f , we have [x, p] = ih̄ as an operator statement.

4 marks: 1 for knowing what a commutator is, one for mentioning that this is true for any
function in the space and 2 for the algebra.
(iii) The Heisenberg uncertainty principle states that the uncertainties in the position and mo-
mentum of a particle must satisfy ∆x∆p≥ h̄/2. 2 marks
In the course I carefully define what is meant by ∆x and ∆p, so maybe some of the students will
give some more details.

∆x = 3×10−5 m and ∆p > h̄/(2∆x) 1 mark. p = h/λ 1 mark so that ∆p = h/λ 2 ∆λ (uncertain-
ties are defined to be positive) 1 mark.

∆λ =
λ 2

h
∆p≥ λ 2

h
h̄

2∆x
=

λ 2

4π∆x
=

(8×10−7)2

4π(3×10−5)
m' 1.7×10−9m. 1 mark

Thus the uncertainty in the wavelength is at least a few nm.

I expect only a few students to get all of these last 4 marks even though we have done similar
exercises in the course.

B2 Parts (i), (ii) and (iii) are largely bookwork. I do (i) and (ii) in the lectures for the general
HO Hamiltonian and study the lowering operator explicitly, telling the students that the raising
operator works in a similar way. i) The key point here is to note that [x, p] = ih̄ 2 marks so that

(x+ ip)(x− ip) = x2 + p2− i[x, p] = x2 + p2 + h̄ .

Thus we have H = x2 + p2 = (x+ ip)(x− ip)− h̄. 2 marks
ii) The required commutator is

[a−,a+] =
1

2h̄
[x+ ip,x− ip] =

i
2h̄

(−[x, p]+ [p,x]) =
i

2h̄
(−2ih̄) = 1 .
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Although I have written the solution in this 1 line form, some students will struggle a little
1 mark for explicitly or implicitly dropping the commutators [x,x] and [p, p], 2 for reor-
ganising the right-hand side in terms of commutators [x, p] and two for completing the
calculation correctly.
iii) We have covered this in the lectures for general m and ω , but I imagine that most students
will have to figure out the details, recalling the general ideas.

From the earlier two parts we have that H = h̄(2a−a+−1). Using Hψ = Eψ , we have

H(a+ψ) = h̄ [2a−a+−1]a+ψ = h̄[2a+a−+1]a+ψ, where we have used the commutator in (ii)
= h̄a+[2a−a++1]ψ
= a+ [H +2h̄]ψ = (E +2h̄)(a+ψ) .

Thus a+ψ is an eigenfunction of the Hamiltonian with eigenvalue E +2h̄.

1 mark for each of the 5 equations above (or equivalent if the student proceeds differently,
e.g. by rewriting H = h̄(2a+a−+1) and proceeding as above).
(iv) We have to translate the result in A5.

(a) Kinetic energy = p2/2m ⇒ in this question m = 1
2 .

(b) Potential energy = 1
2mω2x2 = 1

4ω2x2 ⇒ in this question ω = 2 and mω = 1.

Thus from the wave function given in A5 we have

ψ0(x) =
(

1
π h̄

)1
4

exp
[
− x2

2h̄

]
.

2 marks
Even though this is straightforward, I wanted the students to demonstrate that they see that
this question is a particular case of the general Hamiltonian for the HO. The next part is to
demonstrate that they understand that a+ is a raising operator.

ψ1(x) ∝ a+ψ0(x) ∝ (x− ip)ψ0(x) ∝

(
x− h̄

d
dx

)
exp
[
− x2

2h̄

]
= 2xexp

[
− x2

2h̄

]
.

The stronger students will notice that the 2x comes from x+x whereas for the lowering operator
we would have had x− x = 0 as required for the ground state.

Since we are not required to determine the normalisation constant, it was sufficient to put the ∝

symbols in the above equation. Thus the wave function of the first excited state is

ψ1(x) = A1 x exp
[
− x2

2h̄

]
,

where A1 is a constant.

4 marks: 2 for knowing that they need to evaluate a+ψ0 and 2 for the correct evaluation.

5



B3 Part (i) is bookwork.

(i) The single-frequency solutions of the Schödinger equation for a free particle are not normaliz-
able and are hence unphysical (e.g. eikx in one dimension) (2 marks). In practice wavefunctions
are superpositions of solutions over a range of values of k (and therefore of different energies E).
We call such wavefunctions wavepackets. 2 marks
While each component of the wavepacket propagates with its (phase) velocity ω/k, for a wavepacket
peaked around a certain k the envelope of the packet propagates with the group velocity, dω/dk,
for a period until it dissipates. 2 marks, the marks for dω/dk come in the part(iii).
(ii) Even though this question is relatively straightforward, 2nd-year students do find Fourier
transforms tricky. The inverse Fourier transform is

φ(k) =
1√
2π

∫
∞

−∞

dx Ψ(x,0)e−ikx 2 marks

=
1√
2π

1√
2a

∫ a

−a
dx e−ikx

=
1

2
√

πa
i
k

[
e−ika− eika

]
=

1√
πa

sinka
k

. 2 marks

For a free particle the energy ω(k) = h̄2k2/2m (1 mark).

Ψ(x, t)=
1√
2π

∫
∞

−∞

dk φ(k) exp
[

i
(

kx− ω(k)t
h̄

)]
=

1
2
√

πa

∫
∞

−∞

dk
sinka

k
exp
[

i
(

kx− h̄k2

2m
t
)]

.

2 marks for the first equation and 1 for correctly rewriting it as in the second.
(iii) In this simple example the wavepacket is peaked around k = 0 (1 mark) and the group
velocity is dω

dk (k = 0) = 0 . 2 marks
For larger a the wavefunction at t = 0 is more spread out in x and hence, by the uncertainty
principle more narrowly peaked in k-space (this can also be seen mathematically from the form
of φ(k) above, but I do not expect the students to point this out). 1 mark.

The wavepacket dissipates more slowly of it contains a narrow range of frequencies (or k’s) and
this will be the case for large a. 2 marks
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B4 This question is intended to test the understanding of some fundamental aspects of the Hy-
drogen atom. Part (i) is bookwork.

(i) It can be shown (indeed it was shown in the lectures) that the three operators H, L2 and Lz
commute, where~L is the angular momentum and the choice of Lz rather than another component
is conventional. Thus we can choose for the basis of energy eigenfunctions ones which are also
eigenfunctions of L2 with eigenvalue l(l + 1)h̄2 and Lz with eigenvalue mh̄. n, the principal
quantum number, labels the energy level. 3 marks
1 mark for understanding about the commutation of the three operators and 2 marks for the
explanation of the quantum numbers.

For a given n, l = 0,1, · · ·n−1 and for a given l there are 2l +1 values of m. 2 marks
Thus for n = 2 there are 1+3=4 states and with the same energy. 1 mark
(ii) 〈r〉 is given by 〈r〉=

∫
d3r r ψ∗(~r )ψ(~r ). 1 mark

In this case
〈r〉= 1

32πa5

∫
d3r r× r2 cos2

θe−r/a . 1 mark

Now the φ integration simply gives 2π (1 mark) and the θ integration gives∫ 1

−1
dc c2 =

2
3
. 2 marks

Finally, using the given integral, the integration over r is∫
∞

0
dr r5 e−r/a = 120a6 . 2 marks

Putting everything together we have

〈r〉= 1
32πa5 ×2π× 2

3
×120a6 = 5a . 1 mark

Some students find the use of spherical polar coordinates to be difficult, even though they first
meet them in Year 1. I expect a variety of answers and a spread of marks. As always, I will have
to mark the answers carefully, giving credit for partial understanding.

(iii) The energy of the emitted photon is −13.6(1/9−1) eV=12.09 eV. 2 marks
In terms of the wavelength λ , the energy of a photon is hν = hc/λ . 2 marks
The students have been told that 1 eV=1.602×10−19 J and from the table of constants they have
h = 6.626×10−34 J s and c = 2.998×108 m s−1 . This gives

λ = 1.03×10−7 m . 2 marks

The students generally find such questions, i.e. part (iii), straightforward.
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