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Section A

A1. Explain what are meant by travelling and standing waves. [ 2 ]

Travelling waves are those which maintain a constant form that is simply translated through space as

time evolves. Standing waves maintain a spatially fixed form, that is multiplied by an evolving function

of time. Standing waves may be written as superpositions of travelling waves, and vice-versa.

Write an expression for a sinusoidal example of a travelling wave, and derive

from it the phase velocity. [ 2 ]

A suitable sinusoidal example would be ψ(x, t) = ψ0 sin(kx − ωt + ϕ). The phase velocity is then the

velocity of a point of constant amplitude, i.e. ψ(x, t) = ψ1, from which it follows that kx − ωt + ϕ = c,

which may be rearranged to give an equation of motion x = c/k + (ω/k)t. The coefficient of t is the

phase velocity.

A2. Explain, with examples, the difference between transverse and longitudinal

waves. [ 3 ]

Transverse and longitudinal waves refer to the propagation of vector quantities. A transverse wave is

thus one in which the propagating quantity is a vector that is normal to the propagation direction [1],

such as the displacement of a string or an electric/magnetic field component [0.5]. A longitudinal wave

is similarly one in which the propagating quantity is a vector parallel to the propagation direction [1],

such as the acoustic displacement of a medium or the direction of heat flow in a thermal wave [0.5].

Give an example of a wave that is neither transverse nor longitudinal. [ 1 ]

The quantum wavefunction; a chemical wave of species concentration; a ’wave of fear’.

A3. Outline the Huygens description of wave propagation. [ 2 ]

The Huygens description allows the propagation of a wavefront to be determined by placing imaginary

sources along a given wavefront and calculating the disturbance that would result some time later from

those sources alone. When performed geometrically, the new wavefront lies along the common tangent

to the circular wavefronts from adjacent contributions.
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Explain how the Huygens description can be used to calculate the diffraction

pattern of an illuminated object. [ 2 ]

Imaginary sources are placed along a wavefront as it encounters the diffracting object, and the

disturbance radiated by each source is considered to be modulated according to the transmission of

the object at that point. The diffracted wave is then the resultant of the transmitted amplitudes.

A4. Explain how dispersion is apparent in the evolution of a propagating wavepacket,

and in the phase velocities of its sinusoidal components. [ 2 ]

Dispersion describes the spreading of a wave packet as it propagates, and corresponds to a variation

in the phase velocity as a function of the frequency of sinusoidal components.

The dispersion relation between the angular frequency ω and wavenumber k

for the quantum wavefunction of a particle of mass m is

ω =
h̄

2m
k2.

Determine the phase velocity and the group velocity for a wavepacket of (mean)

wavenumber k. [ 2 ]

The phase velocity is given by

vp =
ω

k
=

h̄
2m

k.

The group velocity is given by

vg =
dω
dk

=
h̄
m

k.

A5. Outline the bandwidth theorem, and explain its significance for both classical

and quantum mechanical wave motions. [ 4 ]

The bandwidth theorem is that if we wish to limit the extent of a wavepacket in one dimension (space,

time, frequency, wavenumber), then it will span at least a certain range in the space of the conjugate

variable. A brief pulse therefore comprises a wide range of frequencies [1]. If we express the spread

or range of the wavepacket in the space of a given variable by the uncertainty in the variable, then the

bandwidth theorem is that product of the uncertainties cannot fall below a given value. For example [1],

∆x∆k ≥
1
2
,

∆t∆ω ≥
1
2
.
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In classical systems, the bandwidth theorem hence means that to discriminate between similar

frequencies there is a minimum duration for the measurement, and that for an instrument to respond to

brief pulses it must have at least a certain bandwidth [1]. In quantum systems, the bandwidth theorem

is equivalent to Heisenberg’s uncertainty principle, that one cannot simultaneously know, for example,

the position and momentum of an electron or photon, with arbitrary precision [1].
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Section B

B1. Figure (a) shows how a wave in shallow water may be analysed by dividing

the water into vertical slices of rest width δx and considering the motions

of the slices. Here, x is the horizontal distance, h(x) the water height, ξ1,2

the displacements of the slice edges from their rest positions, and vx1,2 the

horizontal velocities of the edges. Motion is assumed limited to the x− h plane.

(a) (b)

(a) By assuming that the volume of water within each slice remains fixed, show

that h(x) (δx + ξ2 − ξ1) will be constant, and hence that

∂h
∂t

= −h0
∂vx

∂x
,

where h0 is the undisturbed height. Make clear any other assumptions. [ 4 ]

The distance between the edges of the slice will be (δx + ξ2 − ξ1). The volume of the slice will

therefore be h(x)(δx + ξ2 − ξ1)δy, where δy is the extent of the slice along the wavefront, which is

assumed not to change as the wave propagates. For the quantity of water to remain constant, it

hence follows that h(x)(δx + ξ2 − ξ1) will be constant. [ 1 ]

Differentiating with respect to time, we obtain

h(x)
(

dξ2

dt
−

dξ1

dt

)
+
∂h
∂t

(δx + ξ2 − ξ1) = 0. [ 1 ]

Rearranging, assuming that |δx| � |ξ1 − ξ2|, writing vx1,x2 ≡ dξ1,2/dt , taking the limit as δx → 0
and assuming h(x) ≈ h0, we obtain

∂h
∂t

= − lim
δx→0

h(x)
dξ2
dt −

dξ1
dt

δx

= −h(x) lim
δx→0

vx2 − vx1

δx

= −h(x)
∂v

∂x
≈ −h0

∂vx

∂x
.

[ 2 ]
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(b) Write an expression for the hydrostatic pressure P1,2(z) upon the edges of

the slice, as shown in Figure (b) above. By considering the force upon a

vertically thin element of the slice at height z, hence show that

∂vx

∂t
= −g

∂h
∂x
,

where g is the acceleration due to gravity. [ 3 ]

The hydrostatic pressure at height z will be (h(x) − z)ρg, where ρ is the water density and g the

acceleration due to gravity. The water is assumed to be incompressible. The force upon a vertically

thin element of thickness δz that extends a distance δy along the wavefront will therefore be

F = {(h(x) − z) − (h(x + δx) − z)} ρg. [ 1 ]

The mass of the element will be δxδyδzρ. From Newton’s second law, we hence obtain

δxδyδzρ
∂2ξ

∂t2 = {(h(x) − z) − (h(x + δx) − z)} ρg. [ 1 ]

Rearranging and taking the limit as δx→ 0, we hence obtain

∂vx

∂t
≡
∂2ξ

∂t2 = −g lim
δx→0

h(x + δx) − h(x)
δx

= −g
∂h
∂x
. [ 1 ]

(c) Hence derive the wave equation for shallow-water waves

∂2h
∂t2 = gh0

∂2h
∂x2 . [ 3 ]

Differentiating the two expressions with respect to t [1] and x [1], and equating the terms ∂2vx/∂x∂t,
we obtain [ 2 ]

∂2h
∂t2 = −h0

∂2vx

∂x∂t
= −h0

∂

∂x
∂vx

∂t
= gh0

∂2h
∂x2 . [ 1 ]

(d) By substituting into the wave equation a trial travelling wave of the form

h(x, t) = h(u) where u ≡ x − vpt, show that the phase velocity will be

vp = ±
√
gh0. [ 3 ]
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Differentiation by the chain rule gives, for constant ∂u/∂t and ∂u/∂x,

∂2h(u)
∂t2 =

(
∂u
∂t

)2 d2h
du2 = (−vp)2 d2h

du2
[ 1 ]

and

gh0
∂2h
∂x2 = gh0

(
∂u
∂x

)2 d2h
du2 = gh0

d2h
du2 . [ 1 ]

Substitution into the wave equation and cancellation of the common second derivative hence gives

v2
p = gh0,

and hence the result sought. [ 1 ]

(e) Explain what happens as the straight wavefronts of ocean swell approach

a gently shelving shoreline. [ 3 ]

As the wavefronts enter shallowing water, the reduction in h causes vp to reduce [1], allowing the

trailing parts of the wavefront to catch up with the more advanced parts [1]. The result is that, as

they approach the shore, wavefronts become closer together and more parallel to the shore [1]. [ 3 ]

(f) Given that the energy density of shallow-water waves per unit horizontal

(seabed) area is

E = ρg(h − h0)2,

determine the power per unit length along the wavefront. [ 2 ]

The power per unit wavefront length, P, will be simply the product of the energy density and the

wave velocity vp,

P = ρg(h − h0)2
√
gh0. [ 2 ]

(g) Hence explain how a wave originating in the deep ocean is transformed as

it approaches the shore to become a tsunami. [ 2 ]

Unless energy is stored somewhere, the power into and out of any region must balance, so P

must remain constant as the wave approaches the shore. As h0 falls, there must therefore be an

increase in the wave height (h − h0), which will grow in proportion to h−1/4
0 . [ 2 ]
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B2. (a) Explain the principles of Fourier synthesis and analysis, and what is meant

by the Fourier transform. [ 4 ]

The principle of Fourier synthesis is that any wavefunction can be built up from sinusoidal wave

components of appropriate magnitudes and phases. The corresponding principle of Fourier

analysis is that any wavefunction can be broken down into these components. If we know

how sinusoidal wave components behave in a particular system, we can hence determine the

behaviour of an arbitrary wave motion by breaking it into sinoisoidal components, allowing for their

known behaviour, and recombining them into the composite wave. [ 2 ]

The Fourier transform is the mathematical operation that allows a function of time or position to

be instead represented as a function of frequency or spatial frequency – i.e., by the spectrum of

sinusoidal or complex exponential components into which it may be resolved. [ 2 ]

(b) A function ψ(x) that is antisymmetrical about x = 0 and periodic with

interval X may be written as

ψ(x) =

∞∑
m=1

am sin
(

2πm
X

x
)

(1)

where the Fourier components am are given by

am =
2
X

∫ X/2

−X/2
ψ(x) sin

(
2πm

X
x
)

dx.

Show that, for a square wave of interval X, defined for |x| < X/2 by

ψ(x) = −a0 (|x| < 0)

ψ(x) = a0 (|x| > 0),

the Fourier components are given by

am =
4a0

πm
sin2

(mπ
2

)
. [ 4 ]

We insert the given waveform into the expression for the Fourier components am, and break it into

two parts at the discontinuity in ψ(x):

am =
2
X

∫ X/2

−X/2
ψ(x) sin

(
2πm

X
x
)

dx

=
2
X

{∫ 0

−X/2
−a0 sin

(
2πm

X
x
)

dx +

∫ X/2

0
−a0 sin

(
2πm

X
x
)

dx
}
.
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The integrals are then straightforward to evaluate: [ 2 ]

am =
2a0

X
X

2πm

{[
− cos

(
2πm

X
x
)]0

−X/2
−

[
− cos

(
2πm

X
x
)]X/2

0

}
.

=
a0

πm
{−1 + (cos πm) + cos (πm) − 1}

=
2a0

πm
(1 − cos πm) =

4a0

πm
sin2

(mπ
2

)
.

using cos 2ϑ = 1 − 2 sin2 ϑ. [ 2 ]

(c) By integrating equation (1) over the range from x = −X/4 to x, show that

a symmetrical triangular wave ϕ(x′) of period X, with a maximum at x = 0
and peak-to-peak amplitude 2b0 may be written as

ϕ(x′) =

∞∑
m=1

bm cos
(

2πm
X

x′
)
,

where

bm =
8b0

(πm)2 sin2
(mπ

2

)
. [ 6 ]

Integrating equation (1) with respect to x over the range from −X/4 to x, [ 2 ]∫ x

0
ψ(x)dx =

∞∑
m=1

am

∫ x

−X/4
sin
(

2πm
X

x
)

dx

=

∞∑
m=1

X
2πm

am

[
− cos

(
2πm

X
x
)]x

−X/4

=

∞∑
m=1

−X
2πm

am cos
(

2πm
X

x
)
,

where we use that cos(πm/2) = 0 for odd m for which am , 0.

The left side, since ψ(x) is a square wave, will be a triangular wave of the same periodicity, with

maximum/minimum values of ±a0X/4 occurring (modulo X) at x = 0, X/2. To form the symmetrical

triangular wave of peak-to-peak amplitude 2b0, we must therefore multiply by [−b0/(a0X/4)]. [ 2 ]

We hence obtain

ϕ(x) =
−4b0

a0X

∞∑
m=1

−X
2πm

am cos
(

2πm
X

x
)

=
2b0

πa0

∞∑
m=1

4a0

πm2 sin2
(πm

2

)
cos
(

2πm
X

x
)

=

∞∑
m=1

8b0

(πm)2 sin2
(πm

2

)
cos
(

2πm
X

x
)
.

[ 2 ]
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(d) The string of a musical instrument is plucked at its midpoint x = 0 in such

a way that it is released from rest with a maximum displacement b0 at time

t = 0. The subsequent motion may be written as

ϕ(x, t) =

∞∑
m=1

bm cos
(

2πm
X

x
)

cos
(

2πm
T

t
)
,

where T is the period of the fundamental oscillation, the coefficients bm

are as defined in part (c), and the phase velocity for waves on the string is

given by vp = X/T .

Show that, at an arbitrary point x, the velocity of the string ∂ϕ/∂t may

be written as a superposition of two square waveforms of period T and

amplitude ±2b0/T with a relative delay of (2x/X)T . [ 4 ]

Differentiating the expression for ϕ(x, t) and writing bm in terms of am, the string velocity will be

∂ϕ

∂t
=

∞∑
m=1

bm cos
(

2πm
X

x
)(
−

2πm
T

)
sin
(

2πm
T

t
)

=

∞∑
m=1

2b0

πma0
am

(
−

2πm
T

)
cos
(

2πm
X

x
)

sin
(

2πm
T

t
)

=

(
−

4b0

a0T

) ∞∑
m=1

am sin
(

2πm
T

t
)

cos
(

2πm
X

x
)

=

(
−

4b0

a0T

) ∞∑
m=1

am

2

{
sin
(

2πm
T

t +
2πm

X
x
)

+ sin
(

2πm
T

t −
2πm

X
x
)}

=

(
−

2b0

a0T

){ ∞∑
m=1

am sin
[

2πm
T

(
t +

T x
X

)]
+

∞∑
m=1

am sin
[

2πm
T

(
t −

T x
X

)]}
.

[Marks for lines 1, 3, 5] [ 3 ]

Each summation is an (inverted) version of the square wave of equation (1) that alternates

between ±2b0/T , and is advanced or delayed by T x/X to give a relative delay of (2x/X)T . [ 1 ]

(e) Hence sketch the velocity of the string at point x = X/16 for −T ≤ t ≤ T . [ 2 ]
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[ 2 ]
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B3. (a) Explain what is meant by the impedance of a medium in the context of

wave propagation. [ 2 ]

The impedance is a measure of the resistance of the medium to disturbance by the process driving

the wave motion. It is related to the ratio of the two properties that are conserved at an interface,

and therefore determines the reflectivity at such a boundary: if the impedances are the same on

both sides of the interface, the wave is not reflected. [ 2 ]

(b) The continuity conditions for electromagnetic waves normally incident

upon the plane interface between two media are

E1 = E2

H1 = H2,

where E1,2 and H1,2 are the total electric and magnetic field strengths in the

two media at the interface and, for a wave component travelling in direction

n̂, the magnetic field strength H = (1/Z) E × n̂, where Z is the impedance

of the medium.

By considering wave components that are incident upon, reflected by and

transmitted through the interface, derive the amplitude reflection coefficient

for electromagnetic waves in terms of the impedances Z1 and Z2. [ 3 ]

We write incident, reflected and transmitted wave components at the interface at time t as the

electric field strengths Ei(t), Er(t) and Et(t), and hence the magnetic field strengths Hi(t) =

Z−1
1 Ei(t) × n̂, Er(t) = Z−1

1 Er(t) × n̂ and Et(t) = Z−1
2 Et(t) × n̂. Applying the continuity conditions for

normal incidence, we therefore obtain, for components in the direction of the transverse electric

and magnetic fields

Ei + Er = Et
1
Z1

(Ei − Er) =
1
Z2

Et.

[ 1 ]

Combining these to eliminate Et, we obtain

Z2 (Ei − Er) = Z1 (Ei + Er) [ 1 ]

and hence, rearranging for Er, we obtain the amplitude reflection coefficient,

Er

Ei
=

Z2 − Z1

Z1 + Z2
. [ 1 ]
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(c) Deduce further expressions for the ratio |Et/Ei| of the transmitted and

incident electric fields Et,i, and for the ratio |Ht/Hi| of the transmitted and

incident magnetic fields Ht,i. [ 2 ]

Using our result for Er/Ei, or re-solving the simultaneous equations, we obtain

Et/Ei =
2Z2

Z1 + Z2

and hence

Ht/Hi =
2Z1

Z1 + Z2
.

[ 2 ]

(d) Show that, if Z2 � Z1, the ratio |Ht/Hi| ≈ 0, and hence that the incident

and reflected magnetic field components must be equal and opposite.

Show that, conversely, if Z2 � Z1, the electric field components must

cancel. [ 3 ]

Ht/Hi = (2Z1/Z2)/(1 + Z1/Z2). Hence if Z2 � Z1, it follows that Ht/Hi ≈ 2 × 0/(1 + 0) = 0. From

the second continuity condition that H1 = H2, since H2 ≈ 0, it follows that Hi + Hr ≈ 0 and hence

Hi ≈ −Hr; the incident and reflected magnetic field components must hence be approximately

equal and opposite. [ 2 ]

Conversely, if Z2 � Z1, we find that Et/Ei ≈ 0 and hence, from the first continuity condition,

Ei ≈ −Er, so it is the electric field components that must cancel. [ 1 ]

(e) Newton observed his ’rings’ by placing a lens of refractive index η = 1.55
onto a block of the same material so that its lower surface of radius of

curvature R = 2.3 m touched the plane surface of the glass block. When

the lens was illuminated from above with yellow-orange light, and viewed

from the same direction, a concentric series of finely spaced bright and

dark rings was observed.

Explain the origin of the observed ring pattern, and the reason why the

centre of the fringe pattern was dark rather than bright. [ 5 ]
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Illumination from above is reflected back to the viewer by both the glass-air interface at the lower

face of the lens, and the air-glass interface at the top of the block. The fringes result from the

interference of these two waves. According to the path difference - which is twice the thickness

of the air gap at the observed position - the two waves will either add constructively, resulting in a

bright fringe, or destructively, leaving darkness. [ 2 ]

At the centre of the pattern where the lens and block touch and hence the thickness of the air

gap is zero, the two waves would be in phase but for a difference between the phases introduced

at the reflecting interfaces [1]. For the glass-air interface, and passage into a medium of higher

impedance (for electromagnetic waves, Z =
√
µ/ε), the incident and reflected electric fields have

the same sign, while for the air-glass interface the signs are opposites [1]. The difference in sign

is equivalent to an additional phase difference of π, and hence the centre of the pattern shows

destructive interference between the reflected components [1]. (In the absence of an air gap the

medium is effectively continuous, and there is therefore nothing to cause a reflection.) [ 3 ]

(f) Show that, if the wavelength of illumination is λ, the radius rn of the nth

dark fringe will be approximately given by

rn ≈
√

nRλ. [ 3 ]

You may neglect the effects of refraction throughout.

(A picture will help here...)

The thickness of the air gap at radius r will be

t = R −
√

R2 − r2 = R
(
1 − (1 − (r/R)2)1/2

≈ R
(
(1/2)(r/R)2) . [ 2 ]

For a dark fringe, taking into account the phase difference discussed above, we require 2t = nλ,

from which it follows that

2
R
2

(rn

R

)2
≈ nλ

and hence rn ≈
√

nRλ. [ 1 ]

(g) Newton measured the radius of the fifth dark ring to be 2.57 mm. Deduce

the wavelength of the orange-yellow light. [ 2 ]

Rearranging for λ and substituting the values given, we obtain

λ =
r2

n

nR
=

0.002572

5 × 2.3
m = 574 nm. [ 2 ]
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B4. A source of waves of angular frequency ωs moves with a velocity v and, at time

t = 0, is at a position r0 relative to a stationary observer.

(a) Show that the distance from the source to the observer at time t � |r0|/|v|
will be given approximately by

r ≈ |r0| +
r0

|r0|
· vt. [ 2 ]

If t � |r0|/|v|, the change in the bearing of the source from the observer will be negligible, and

hence the distance will change only by the component of the change of position vt along the unit

position vector r0/|r0|. Adding this correction to the initial value, we obtain the expression given. [ 2 ]

(b) Show therefore that if the wave leaving the source at time t is ψ(t), then

that seen by the observer will be proportional to

ψ

(
t − t0 −

r0

|r0|
·

v
c

t
)
,

where t0 = |r0|/c and c is the speed with which the wave propagates. [ 3 ]

We assume that the observed wave will be proportional to ψ(t − τ) [1], where τ = r/c is the time it

takes the wave to travel from the source to the observer at speed c [1]. It follows that the observed

wave will be proportional to

ψ

(
t −
|r0|

c
−

r0

|r0|
·

vt
c

)

as required [1]. [ 3 ]

(c) Hence show that the observed wave will have an angular frequency

ωs − δω, where
δω

ωs
=
vx

c
,

and vx is the component of the source’s velocity away from the observer. [ 3 ]

If ψ(t) = ψ0 cosωst, then the observed wave will be proportional to

ψ0 cos
(
ωs

[
t − t0 −

r0

|r0|
·

v
c

t
])

= ψ0 cos
(
ωs

[
1 −

r0

|r0|
·

v
c

]
t − ωst0

)
. [ 1 ]
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The observed frequency s the coefficient of t in this expression, and hence

ωs − δω = ωs

[
1 −

r0

|r0|
·

v
c

]
[ 1 ]

where v · r0/|r0| = vx is the velocity component away from the observer, hence

δω/ωs = vx/c. [ 1 ]

The source is an atom which, when at rest, emits or scatters photons of angular

frequency ω0. The atom emits a photon towards the observer, in whose frame

it has an energy h̄ω. The coordinate axes may be chosen so that the x axis

points from the source to the observer.

(d) By considering the total electronic and kinetic energy of the atom before

and after the emission of the photon, show that, if the x-component of the

atom’s velocity changes by δv when it emits the photon, conservation of

energy requires that

h̄ω = h̄ω0 − mvxδv,

where m is the mass of the atom and vx the mean component of its velocity

away from the observer. [ 4 ]

If the initial and final velocity components are vx − δv/2 and vx + δv/2, then the initial and final

energies of the atom will be h̄ω0 + m(vx − δv/2)2/2 and m(vx + δv/2)2/2. [ 2 ]

The change in atomic energy, which will be emitted as the photon of frequency ω, will hence be

h̄ω = h̄ω0 +
m
2

(
vx −

δv

2

)2

−
m
2

(
vx +

δv

2

)2

= h̄ω0 + mvxδv.

[ 2 ]

(e) Show that, if momentum is conserved during the emission of the photon,

mδv = h̄ω/c. [ 2 ]

The initial and final momenta of the atom will be m(vx − δv/2) and m(vx + δv/2). The change in

momentum, which will be transferred to the backward-emitted photon, will hence be

h̄k = h̄
ω

c
= m

(
vx +

δv

2

)
− m

(
vx −

δv

2

)
= mδv. [ 2 ]
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(f) Hence show that the observed angular frequency will be

ω = ω0

(
1 +

vx

c

)−1
,

and therefore that, if vx � c, the Doppler shift of the photon due to the

motion of the atom will again be

δω = ω − ω0 ≈ ω0
vx

c
. [ 3 ]

Substituting the result from (e) into the expression from (d), we find

h̄ω = h̄ω0 + mvxh̄
ω

c
1
m

so, collecting together the terms in ω,

h̄ω
(

1 −
cx

c

)
= h̄ω0, [ 1 ]

hence the result required. If vx � c, we may use the binomial expansion to obtain

ω ≈ ω0

(
1 −

vx

c

)
[ 1 ]

and hence

δω ≡ ω − ω0 ≈ ω0

(
1 −

vx

c

)
− ω0 = ω0

vx

c
. [ 1 ]

The Fraunhofer K line in the solar spectrum is due to absorption at wavelength

λ0 = 394 nm by Ca+ ions in the photosphere, where the temperature T is

around 5 000 K.

(g) Estimate the variation δλ in the wavelength of the K line that is due to

thermal motion of the Ca+ ions. The r.m.s. velocity component vx,rms for

a thermal distribution is given by v2
x,rms = kBT/m, where kB is Boltzmann’s

constant and the mass m of a Ca+ ion is 6.66×10−26 kg. [ 3 ]

You may assume that δλ/λ0 = δω/ω0.

Using the data given,

vx,rms =

√
kBT
m

=

√
1.38 × 10−23 × 5000

6.66 × 10−26 m s−1 = 1020 m s−1. [ 2 ]
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Hence

δλ = λ0
δω

ω0
= 394 ×

1020
3 × 108 nm = 0.0013 nm. [ 1 ]

END OF PAPER

Copyright 2015 c© University of Southampton Page 18 of 18


