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This paper contains 8 questions.

Answers to Section A and Section B must be in separate answer books

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Section A

A1. State which three variables are held fixed for i) the microcanonical ensemble;

ii) the canonical ensemble; iii) the grand canonical ensemble. Define the

chemical potential µ in terms of internal energy U from the fundamental relation

of thermodynamics, and describe what happens when two systems (with the

same type of particles) with different chemical potentials come into contact. [ 5 ]

A2. Explain the main assumption of the Debye model, and discuss the difference

between the Debye frequency and the Einstein frequency. [ 5 ]

A3. Write down the Fermi-Dirac and the Bose-Einstein distribution functions for a

discrete system, and state the possible values of the occupation numbers (nk)

for both of these distributions. [ 4 ]

A4. The statistical average 〈F〉 of some macroscopic observable F(p, q) of a

physical system which is described by Lagrangian variables is defined by

〈F〉 =
∫

phase−space
dp dq ρ(p, q) · F(p, q) .

Explain what the statistical distribution ρ(p, q) is, and write down its functional

form for a microcanonical ensemble of total energy E0. Explain why the

definition of the microcanonical ensemble unambiguously leads to a specific

function for ρ(p, q).

[ 6 ]
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Section B

B1. (a) Define the statistical entropy σ for a particular macrostate of a discrete

system. By considering a system made up of two parts, with a number of

particles NA in part A and with a number of particles NB in part B, show

that statistical entropy σ is an extensive quantity. [ 5 ]

(b) State whether the number of accessible microstates in an isolated system

increases, decreases, or stays the same for i) a reversible process, and for

ii) an irreversible process. [ 2 ]

(c) Consider two systems A and B, initially isolated from each other and

such that each is individually in thermal equilibrium. The two systems

are then placed in contact, keeping the number of particles (NA and NB)

and volumes (VA and VB) fixed, while allowing energy to be exchanged

(i.e. thermal contact). The two energies EA and EB can vary but their sum

E = EA + EB is conserved since the combined system A + B is isolated.

Show that the condition for thermal equilibrium for the combined system

A+ B is given by τA = τB, where τ is statistical temperature and is defined

as:
1
τ
≡

(
∂σ

∂E

)
V,N
. [ 7 ]

(d) Before the combined system A + B reaches thermal equilibrium (i.e. the

process of thermalisation), by considering its total entropy show that the

energy flow is from the system (A or B) with higher statistical temperature

to the system (A or B) with lower statistical temperature. [ 6 ]
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B2. (a) Show that the partition function Z for a classical ideal gas of N constituents

each of mass m in volume V at temperature T in a canonical ensemble

assumes the following form:

Z(T,V,N) =
VN

N!λth(T )3N , λth(T ) =
h

√
2πmkBT

. [ 6 ]

Hint: The partition function of a system of N constituents with a continuous

energy spectrum (e.g. a classical ideal gas) is given by:

Z(T,V,N) =
1

h3N

1
N!

∫
d

3N
q d

3N
p exp (−E(p, q)/(kBT )) .

The energy of an ideal gas assumes the rather simple form:

E(p, q) =
N∑

i=1

~pi
2

2m
, ~pi

2
= (px

i )2 + (pyi )2 + (pz
i )

2 .

You might need the following integral:∫ ∞

−∞

dx exp
(
−ax2) = √

π

a
, a > 0 .

(b) From the results of (a) and making use of ln n! = n ln n − n for n � 1 and

F = −kBT ln Z and S = −
∂F
∂T

∣∣∣
V,N

,

where F is the free energy and S is the entropy, derive the Sackur-Tetrode

equation for an ideal gas:

S = kBN
[

ln
(V

N
1

λth(T )3

)
+

5
2

]
.

The thermal wavelength λth(T ) has been defined above. [ 8 ]

(c) Now consider a canonical ensemble of a discrete system. By making use

of the relation F = U − τσ (where τ is statistical temperature and σ is
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statistical entropy), derive the following formula for the Gibbs entropy:

σ = −
∑

i

Pi log Pi .

Here Pi is the probability to find the system in a microstate with energy Ei

and is defined by:

Pi =
e−

Ei
τ

Z
,

where Z is the partition function for the discrete system. Then show that

in the microcanonical ensemble the Gibbs entropy is equivalent to the

Boltzmann definition of entropy. [ 6 ]
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B3. Consider an ideal paramagnet with N magnetic dipole moments. Let n↑ and n↓
be the number of spins parallel and antiparallel to an external magnetic field B,

with N = n↑ + n↓. Since interactions are neglected the total energy,

E = −mB∆N , ∆N ≡ (n↑ − n↓) ,

is simply the sum of the N individual energies, where m denotes the magnitude

of the magnetic dipole moment.

(a) Define what a macrostate is for this system and derive the general

expression for the statistical weight of a macrostate in terms of N!, n↓!
and n↑!. [ 5 ]

(b) For N, n↑, n↓ � 1 show that the entropy S is given in terms of N and ∆N

by

S (E(∆N),N) =
1
2

kB

[
(N + ∆N) ln

( 2N
N + ∆N

)
+ (N − ∆N) ln

( 2N
N − ∆N

)]
,

by using Stirling’s formula ln n! ' n(ln(n) − 1) (for n � 1). [ 4 ]

(c) Use the microscopic definition of the temperature to obtain

1
T
=

(
kB

2mB

)
ln

(N + ∆N
N − ∆N

)
. [ 4 ]

Hint: You may find it useful to use the chain-rule: ∂ f (∆N(E))
∂E =

∂ f (∆N)
∂∆N

∂∆N
∂E .

(d) Solve the equation given in part (c) for ∆N to obtain:

∆N
N
=

exp
(

2mB
kBT

)
− 1

exp
(

2mB
kBT

)
+ 1
.

[ 3 ]

(e) Investigate the entropy obtained in (b) for ∆N → 0 and deduce the

statistical weight through the formula S = kB ln W. Why does this weight

not agree with the one in (a) with ∆N = 0 assumed? [ 4 ]
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B4. (a) State the equipartition theorem and use it to write down the mean energy

for a system of a single classical harmonic oscillator in one dimension with

energy given by

E =
(

p2

2m
+

kx2

2

)
.

Then calculate the heat capacity at constant volume (cV) for this oscillator.
[ 4 ]

(b) Now consider a single quantum harmonic oscillator whose energy levels

are given by

εn = h̄ω
(

n +
1
2

)
.

Write down the partition function (Z) for this quantum harmonic oscillator,

and calculate the mean energy 〈ε〉 and the heat capacity cV . You may use

the following results, where τ is statistical temperature and β = 1/τ: [ 8 ]

∞∑
n=0

rn =
1

1 − r
(r < 1) and 〈ε〉 = −

∂

∂β
ln Z .

(c) Evaluate the values of 〈ε〉 and cV for the quantum harmonic oscillator

in the limit of very large τ. Compare with the corresponding values for

the classical harmonic oscillator, and explain the physical reasons for any

agreement or disagreement. [ 5 ]

(d) The statistical entropy σ of the single quantum harmonic oscillator is given

by:

σ =
βh̄ω

eβh̄ω − 1
− ln[1 − e−βh̄ω] .

Evaluate the value of σ as τ → 0 and comment on whether or not this

agrees with the third law of thermodynamics. [ 3 ]

END OF PAPER
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