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QUANTUM PHYSICS OF MATTER

Duration: 120 MINS (2 hours)

This paper contains 9 questions.

Answers to Section A and Section B must be in separate answer books

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language word to word® translation dictionary (paper version) is 

permitted provided it contains no notes, additions or annotations.
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Section A

A1. For each of the following thermodynamic variables, state whether it is an

extensive or an intensive variable, and whether it is a function of state or not:

i) Temperature (T ); ii) Internal energy (U); iii) Entropy (S ); iv) Pressure (p). [ 4 ]

A2. An ideal paramagnet has N magnetic dipole moments. Let n↑ and n↓ be the

number of spins parallel and antiparallel respectively to an external magnetic

field. Write down the statistical weight of each macrostate, W(N, n↑). Then

calculate the statistical entropy σ for the macrostate with n↑ = n↓, giving your

answer in terms of N. Show that this entropy is approximately equal to the

entropy of all the macrostates combined. You may assume N, n↑, n↓ � 1 and

use Stirling’s formula:

ln(N!) ≈ N ln N − N +
1
2

ln(2πN) . [ 5 ]

A3. The Sackur-Tetrode equation for the statistical entropy σ of a classical ideal

gas is as follows:

σ = N ln

[
V

N h3 e
(

4πm
3

)3/2 (E
N

)3/2
]

+
3N
2
.

Using the equation
1

kBT
=

(
∂σ

∂E

)
V,N

,

derive an expression for the energy E in terms of the temperature T . Then

explain whether or not the Sackur-Tetrode equation agrees with the third law of

thermodynamics. [ 3 ]
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A4. Find the partition function for a quantum harmonic oscillator in a canonical

ensemble with energy levels given by

εn = h̄ω
(

n +
1
2

)
,

where n takes positive integer values or is zero. You may use the following

result:
∞∑

n=0

rn =
1

1 − r
(r < 1) . [ 4 ]

A5. For a gas of fermions, the Fermi energy (εF) is defined as the value of the

chemical potential (µ) at T = 0. Briefly explain the physical meaning of εF.

At T = 0, the number of fermions is given by

N =

∫
ε≤εF

8gS V d3 p
h3 ,

where gS is the spin degeneracy factor, V is volume, and the integration is

over the momentum range px > 0, py > 0, pz > 0. By introducing the Fermi

momentum pF =
√

2 m εF, where m is the mass of the fermion, show that εF is

given by

εF =
h̄2

2 m

(
6 π2 n
gS

) 2
3

, [ 4 ]

where n = N/V and h̄ = h/2π.
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Section B

B1. (a) In the grand canonical ensemble (i.e. a system in thermodynamic

equilibrium with a reservoir), the grand potential ΦG is defined as

ΦG = U − T S − µN.

By obtaining an expression for dΦG, show that the number of particles N

in the system is given by

N = −

(
∂ΦG

∂µ

)
T,V

. [ 5 ]

(b) The probability to find the system in a microstate i with energy Ei and

number of particles Ni is given by

Pi =
1
Z

e β(µNi−Ei) .

Here, the grand-partition functionZ is a sum over all microstates i,

Z =
∑

i

e β(µNi−Ei) ,

and β = 1/τ, where τ is the statistical temperature of the reservoir. Show

that

ΦG = −kB T ln Z . [ 7 ]

(Hint: make use of the fact that 〈N〉 =
∑

i Ni Pi.)

(c) For a classical ideal gas in the grand canonical ensemble the grand

partition function is given by

Z = exp
[

eβ µ
V
λ3

th

]
,

where the thermal de Brogie wavelength λth ∝ 1/
√
β. Calculate ΦG and

then N. Hence obtain the following expression for the chemical potential,

µ = kB T ln
(
n λ3

th

)
, [ 3 ]

where n = N/V .
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(d) Using the result that

U = −

(
∂ lnZ
∂β

)
β µ=const

,

show that one obtains the usual expression for the internal energy of a

classical ideal gas:

U =
3
2

N kB T . [ 5 ]
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B2. For a gas of bosons the number density of particles (n) can be approximated

by the equation

n λ3
th = Li3/2(z) .

Here z ≡ eβ µ is the fugacity and λth is the thermal de Broglie wavelength. The

poly-logarithm function Li3/2(z) is defined by the integral

Li3/2(z) =
2
√
π

∫ ∞
0

dx x1/2

z−1 ex − 1
,

where x = βε and ε is energy.

(a) Explain the physical meaning of the thermal de Broglie wavelength, which

is defined as

λth(T ) = h̄

√
2π

g2/3
S mkBT

,

where gS is the spin degeneracy of the bosons in the gas, m is the mass

of a boson, and T is temperature. [ 2 ]

(b) In the low temperature limit (z → 1) one has Li3/2(z) → ζ(3/2) ≈ 2.6.

Hence show that the equation n λ3
th = Li3/2(z) cannot be solved for z for all

values of n and T in this limit of z→ 1. Explain briefly the reasons why this

equation cannot be solved (i.e. the approximation has broken down). [ 5 ]

(c) The critical temperature (Tc) is defined by the equation

n λ3
th(T = Tc) = ζ(3/2) .

Show that
n0

n
=

n − n1

n
= 1 −

(
T
Tc

)3/2

,

where n0 is the number density of particles in the gS ground states of

energy, and n1 is the number density of particles in all other energy states. [ 5 ]
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(d) The internal energy (U) of a gas of bosons for T ≤ Tc is given by the

expression

U =
3
2

kBT
V
λ3

th
ζ(5/2) ,

where V is the volume of the gas. Show that the heat capacity at constant

volume (CV) for T ≤ Tc is given by

CV =
15
4
ζ(5/2)
ζ(3/2)

N kB

(
T
Tc

)3/2

. [ 8 ]

B3. The Maxwell distribution of speeds (v) for the particles of a classical ideal gas

is given by

fM(v) = 4 π
( m

2 π τ

)3/2
v2 e−

m v2
2 τ ,

where m is the mass of a gas particle and τ is the statistical temperature.

(a) Qualitatively sketch fM(v) for three different temperatures τ1 < τ2 < τ3,

and state the value of the area (giving the units) under each curve. [ 4 ]

(b) The maximum value of fM(v) occurs at v = vmax. Derive an expression for

vmax as a function of m and τ. [ 3 ]

(c) Derive expressions for the expectation value 〈v〉 and root mean squared

speed vrms =
√
〈v2〉. You should use the following integrals:

∫ ∞
0

dx x2n+1 e−a x2
=

n!
2 an+1 and

∫ ∞
0

dx x2n e−a x2
=

(2n)!
n! 22n+1

√
π

a2n+1 .

[ 6 ]

(d) Now show that the energy distribution of a gas particle is given by

fM(ε) = 2 π
(

1
π τ

)3/2
√
ε e−

ε
τ ,

where ε is the energy of the particle. [ 5 ]
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(e) For two different ideal gases (e.g. oxygen and nitrogen) at the same

temperature, very briefly explain i) whether or not the speed distribution is

the same for the two gases, and ii) whether or not the energy distribution

is the same for the two gases. [ 2 ]
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B4. (a) In classical physics the spectral energy density in terms of wavelength

(uRJ
λ ) for thermal radiation (which is in equilibrium with the walls of a cavity)

is called the “Rayleigh-Jeans” law. It is given by the expression

uRJ
λ =

8π
λ4 kBT ,

where T is temperature. Qualitatively plot this expression for uRJ
λ as a

function of λ for a fixed temperature, and on the same figure draw the

functional form for uλ which is derived from experiment. In which limit

(either λ → 0 or λ → ∞) does uRJ
λ agree with the experimental functional

form, and in which limit does it disagree? [ 4 ]

(b) The Planck distribution for uλ is given by the expression

uλ =
8 π
λ5

h c

e
β h c
λ − 1

.

What assumption did Planck make for the thermal radiation in order to

obtain this expression for uλ? Derive the behaviour of uλ when λ is very

large and when λ is very small. [ 5 ]

(c) By integrating uλ in (b), show that the total energy density u is given by

u =
π2

15
(kB T )4

(h̄ c)3 .

[Note: Use the integral ∫ ∞
0

dx
x3

ex − 1
=
π4

15
. ] [ 7 ]

(d) Qualitatively, briefly discuss an alternative way of obtaining the Planck

distribution uλ which makes a different assumption about the nature of

thermal radiation, and comment on the equivalence of the two approaches. [ 4 ]

END OF PAPER
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