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Quantum Physics of Matter

Duration: 120 MINS (2 hours)

This paper contains 8 questions.

Answers to Section A and Section B must be in separate answer books

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Section A

A1. Write down the Boltzmann formula that defines the statistical entropy σ for

an isolated system in equilibrium, explaining the meaning of the quantities

involved. What is the dimensionality of σ? How is the statistical entropy σ

related to the thermodynamic entropy S ? [ 4 ]

A2. (a) State the postulate of equal a priori probabilities and explain how from this

it is possible to determine the statistical distribution within the microcanon-

ical ensemble.

(b) Write down the statistical distribution ρ(p, q) for a microcanonical ensemble

(microcanonical distribution), for a classical system described by a set of

(generalised) momenta and coordinates (p, q) motivating its expression

(you can indicate the normalisation constant generically with C and leave

it unspecified). [ 5 ]

A3. Classical statistical mechanics does not unambiguously reproduce the correct

expression for the entropy of an ideal gas of identical particles (Sackur-Tetrode

formula) in agreement with the laws of thermodynamics for two reasons:

discuss them briefly (in no more than 150 words). [ 5 ]

A4. Write down the Fermi-Dirac distribution function for a quantum ideal gas,

explaining its physical meaning. In what limit does a (non-relativistic) Fermi

gas become degenerate for a fixed particle number density? Specify in this

case the asymptotic limit of the Fermi-Dirac distribution function discussing, in

no more than 100 words, its physical meaning. [ 6 ]
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Section B

B1. (a) Consider a macroscopic system. What is the definition of the term

microstate? What is the definition of the term macrostate? What is the

definition of statistical weight of a macrostate? What is the definition of

phase space for a classical system? And for a discrete system? [ 5 ]

(b) Consider a classical system described by a set of (generalised) momenta

and coordinates (p, q) ≡ (p1, p2, . . . , pM; q1, q2, . . . , qM), where M is the

number of degrees of freedom. Consider an ideal gas of N identical

particles. What is the number of degrees of freedom M in this case? What

is the total energy E(p, q) of such a system? [ 4 ]

(c) What is the number of microstates in the infinitesimal volume of the phase

space dp dq if the particles are assumed to be distinguishable? How does

it change if the particles are assumed to be indistinguishable and why? [ 4 ]

(d) Consider an isolated ideal paramagnet made of 5 particles with dipole

magnetic moment ~m that can have only two discrete values: either ~m =

+m ẑ or ~m = −m ẑ (m ≡ |~m|). What specifies a macrostate? What is

the total number of microstates? Assume the equal a priori probability

postulate. What is the probability of that particular microstate where all

five dipole magnetic moments are positive? What is the probability of the

microstate where all five magnetic moments are negative? What is the

statistical weight and the probability of the macrostate where 3 particles

have positive magnetic moment? [ 7 ]

Copyright 2013 c© University of Southampton Page 3 of 8

TURN OVER



4 PHYS2024W1

B2. (a) Write down the fundamental relation of thermodynamics for a macroscopic

system with a fixed number of particles explaining the meaning of the

quantities involved. What is the meaning of the fundamental relation of

thermodynamics? How does it get specialised in the case of an isolated

system? How is it related to the laws of thermodynamics? [ 5 ]

(b) Starting from the fundamental relation of thermodynamics, derive the exact

differential for the free energy F properly defined in terms of the other

thermodynamic quantities. How can the pressure be calculated from the

free energy? [ 4 ]

(c) Consider the canonical ensemble. How is it defined? Write down the

canonical distribution and give the definition of partition function. [ 4 ]

(d) The partition function for an ideal gas of N non-relativistic identical

particles with mass m, in a volume V at temperature T is given by

Z =
1

N!

(
V
λ3

th

)N

,

where

λth ≡
h

√
2 πm τ

,

is the thermal De Broglie wavelength. How is the statistical temperature τ

related to the thermodynamic temperature T? Show that the free energy

F is given by

F = −N τ log
[

e V
N λ3

th

]
. [ 4 ]

(e) Derive the equation of state for an ideal gas from the free energy F. [ 3 ]
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B3. (a) Show that the Bose-Einstein distribution for the mean occupation numbers

〈nk〉 of the one-particle quantum states of a gas of (non-interacting) bosons

is given by

〈nk〉 =
1

eβ (εk−µ) − 1
,

where β ≡ 1/(kB T ), εk is the energy of the state k and µ is the chemical

potential.

Hint: calculate the grand-potential ΦG(Ek) for the particles in a quantum

state with energy Ek = nk εk (system with a variable number of particles)

and then use

〈nk〉 = −
∂ΦG(Ek)
∂µ

.

[ 6 ]

(b) Consider now the Bose-Einstein distribution function for a gas of photons

(Planck distribution function). Express it in terms of the photon wavelength

λ and derive the Planck law for the spectral energy density uλ of the black

body radiation given by

uλ =
8 π h c
λ5

1

e
β h c
λ − 1

.

Hint: The number density of photon states in the infinitesimal interval

[p, p + dp] is given by:

2
dp p2

2 π2h̄3 ,

where the pre-factor 2 is the number of polarizations. [ 4 ]

(c) Derive the Rayleigh-Jeans law in the limit of long wavelengths, when

β h c/λ � 1. Explain why the Planck constant disappears and what the

ultraviolet catastrophe is. [ 6 ]

(d) By integrating the spectral energy density uλ, derive the expression for the
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total energy density

u =
π2

15
k4

B T 4

h̄3 c3
,

using ∫ ∞
0

dx
x3

ex − 1
=
π4

15
.

[ 4 ]

Copyright 2013 c© University of Southampton Page 6 of 8



7 PHYS2024W1

B4. Consider a crystalline solid where N atoms, with N � 1, are arranged in

a lattice, such that their mean positions form a three-dimensional array of

regularly spaced points.

(a) How many vibrational modes does such a system have ?

Deduce the heat capacity from the theorem of equipartition of energy

(Dulong and Petit’s Law). [ 3 ]

(b) Consider now the Einstein model, where the vibrational modes are

described in terms of quantum harmonic oscillators with the same angular

frequency ωE. Show that the heat capacity is given by

C = 3 N kB
y2 ey

(ey − 1)2 ,

where y = ΘE/T and ΘE = h̄ωE/kB.

Hint: start calculating the mean energy of one quantum harmonic oscillator

with angular frequency ωE and use
∑∞

n=0 rn = 1
1−r , for r < 1. [ 6 ]

(c) Explain the assumptions of the Debye model, in particular how the Debye’s

frequency is defined, and how it differs from the Einstein model. [ 5 ]

(d) In the Debye model the heat capacity is given by

C =
9 N kB

x3
D

∫ xD

0
dx

x4 ex

(ex − 1)2 ,

where xD = ΘD/T and ΘD = h̄ωD/kB is the Debye temperature. Show

that in the limit of low temperatures (xD � 1) the heat capacity behaves

as C ∝ T 3. How would this behavior be modified for a solid described by a

two-dimensional lattice? [ 3 ]

(e) Discuss, in no more than 150 words, the physical meaning of phonons and

how they can be used to describe lattice vibrations. In particular, explain

similarities and differences between photons and phonons. [ 3 ]
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END OF PAPER
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