
UNIVERSITY OF SOUTHAMPTON PHYS3010W1

SEMESTER 2 EXAMINATION 2013-2014

STELLAR EVOLUTION

Duration: 120 MINS (2 hours)

This paper contains 8 questions.

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Formula Sheet

Stellar structure equations:

dr
dm

=
1

4πr2ρ
dP
dm

= − Gm
4πr4

dl
dm

= εnuc

dT
dm

= − Gm
4πr4

T
P
∇ with ∇ =

{
∇rad = 3

16πacG
P
T 4

κl
m if ∇rad ≤ ∇ad

∇ad if ∇rad > ∇ad

Eddington luminosity:

LEdd =
4πcGM

κ
= 3.8 × 104

(
M
M�

)(
0.34 cm2/g

κ

)
L�

Diffusion equations:

F = −D∇U = −K∇T with K = D CV =
1
3
vlfpCV

Mean free path:

lfp =
1
κρ

=
1

nσ

Ideal gas equation of state:

Pgas = nkT =
R
µ
ρT =

k
µmu

ρT

Ideal gas equation of state for multiple particle species:

Pgas =
∑

i

Xi

Ai

ρ

mu
kT
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Mean molecular weight for electrons in a fully ionised gas:

1
µe

=
1 + X

2

Total mean molecular weight in a fully ionised gas:

1
µ
≈ 2X + 4

3Y + 1
2Z

Fermi momentum:

pF = h
(

3
8π

ne

)1/3

Fermion equation of state (non-relativistic):

Pe,NR = KNR

(
ρ

µe

)5/3

with KNR =
h2

20mem
5/3
u

(
3
π

)2/3

= 1.0036 × 1013 [cgs] = 1.0036 × 107 [SI]

Fermion equation of state (extremely relativistic):

Pe,ER = KER

(
ρ

µe

)4/3

with KER =
hc

8m4/3
u

(
3
π

)1/3

= 1.2435 × 1015 [cgs] = 1.2435 × 1010 [SI]

Boson equation of state:

Pγ =
1
3

aT 4

Mass-luminosity relationship for main sequence stars:

L
L�

=

(
M
M�

)3
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Lane-Emden equation for a polytrope P = Kργ = Kρ(n+1)/n:

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0

with ρ = ρcw
n

and r = αz, where α =

√
n+1
4πG Kρ(1−n)/n

c .

Physical properties of the Lane-Emden equations:

R = αzn

M = 4πα3ρcΘn

K = NnGM(n−1)/nR(3−n)/n with Nn =
(4π)1/n

n + 1
Θ(1−n)/n

n z(n−3)/n
n

Pc = Wn
GM2

R4

Numerical values for polytropic models with index n:

Table 4.1. Numerical values for polytropic models with index n.

n zn Θn ρc/  ρ Nn Wn

0 2.44949 4.89898 1.00000 . . . 0.119366
1 3.14159 3.14159 3.28987 0.63662 0.392699
1.5 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54.1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84
5 ∞ 1.73205 ∞ ∞ ∞

In order to simplify eq. (4.2), we define two new dimensionless variables w (related to the density)
and z (related to the radius) by writing

ρ = ρcwn, (4.5)

r = αz, with α =

(
n + 1
4πG

Kρ1/n−1
c

)1/2
. (4.6)

This choice of α ensures that the constants K and 4πG are eliminated after substituting r and ρ into
eq. (4.2). The resulting second-order differential equation is called the Lane-Emden equation:

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0. (4.7)

A polytropic stellar model can be constructed by integrating this equation outwards from the centre.
The boundary conditions (4.4) imply that in the centre (z = 0) we have w = 1 and dw/dz = 0. For
n < 5 the solution w(z) is found to decrease monotonically and to reach zero at finite z = zn, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. The only exceptions are n = 0,
1 and 5, for which the solutions are:

n = 0 : w(z) = 1 − z
2

6
z0 =

√
6, (4.8)

n = 1 : w(z) =
sin z
z

z1 = π, (4.9)

n = 5 : w(z) =
(
1 +

z2

3

)−1/2

z5 = ∞. (4.10)

The case n = 0 (γ = ∞) corresponds to a homogeneous gas sphere with constant density ρc, following
eq. (4.5). The solution for n = 5 is peculiar in that it has infinite radius; this is the case for all n ≥ 5,
while for n < 5 zn grows monotonically with n. For values of n other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see the accompanying computer
practicum). Table 4.1 lists the value of zn for different values of n, as well as several other properties
of the solution that will be discussed below.

47

Physical constants:
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c = 3 × 1010 cm/s = 3 × 108 m/s

kB = 1.38 × 10−16 erg K−1 = 1.38 × 10−23 J K−1

R = 8.31 × 107 erg K−1mol−1 = 8.31 J K−1 mol−1

mu = 1.66 × 10−24 g = 1.66 × 10−27 kg

me = 9.11 × 10−28 g = 9.11 × 10−31 kg

h = 6.63 × 10−27 erg s = 6.63 × 10−34 J s

G = 6.67 × 10−8 cm3 g−1 s−2 = 6.67 × 10−11 m3 kg−1 s−2

1 eV = 1.60 × 10−12 erg = 1.60 × 10−19 J

a = 7.56 × 10−15 erg cm−3 K−4 = 7.56 × 10−16 J m−3 K−4

σSB = 5.67 × 10−5 erg cm−2 s−1 K−4 = 5.67 × 10−8 J m−2 s−1 K−4

AU = 1.496 × 1013 cm = 1.496 × 1011 m

M� = 1.99 × 1033 g = 1.99 × 1030 kg

R� = 6.96 × 1010 cm = 6.96 × 108 m

L� = 3.9 × 1033 erg/s = 3.9 × 1026 J/s

T� = 5780 K = 5780 K
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Section A

A1. What is the source of pressure support in white dwarfs? What kind of equation

of state describes a typical white dwarf? What is the associated polytropic

index for the ones that have masses much lower than the Chandrasekhar mass

limit? [ 3 ]

A2. Assuming that a typical star is in hydrostatic equilibrium, derive an approximate

expression for its central pressure and calculate an order-of-magnitude value

for this quantity. Justify your assumptions if necessary. [ 5 ]

A3. In two to four sentences explain what is the helium flash? Your answer must

specify the type of star that is involved, the stage of evolution and why it does

not happen to every star. [ 4 ]

A4. Suppose fusion stopped at the centre of the Sun, how long could it maintain its

current luminosity? What timescale does this correspond to? [ 4 ]

A5. What is the Schönberg-Chandrasekhar limit? Explain how it affects the

evolution of stars? What particular feature of the colour-magnitude diagram

does it explain? [ 4 ]
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Section B

B1. (a) In one sentence explain the main observational difference between type I

and type II supernovae. [ 1 ]

(b) What are the progenitors of type Ia, type Ib, type Ic and type II supernovae?

Which one(s) would you find associated with old stellar populations? [ 5 ]

(c) In two or three sentences explain why empirically and theoretically we

believe that type Ia supernovae can be used as standard candles for

distance measurements. [ 3 ]

(d) Sketch the typical light curve evolution of a type Ia supernova on a

magnitude/log(Flux) vs time plot. Indicate the rough time scale on the

time axis. [ 2 ]

(e) In a type II supernova, the core of a massive star collapses to form a typical

neutron star of mass 1.4 M� and radius 12 km. Find an upper limit to the

bolometric luminosity of such a supernova. [ 5 ]

(f) In reality, we only see about 1% of the total energy available in a

supernova. Where does the rest of the energy go? How is this “missing”

energy produced, and why is it also important in terms of ensuring that the

supernova does not fail? [ 4 ]
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B2. Consider a star made of hydrogen, helium and traces of heavy elements. The

hydrogen distribution is given by:

X(m) =

{
0.1 for m < mc ,

0.7 for m ≥ mc .

(a) In this star a discontinuous jump in the composition profile occurs at

m = mc. What could have caused such a chemical profile? Why is the

outer part hydrogen-rich? Write down the expected stellar composition in

the two different regions. [ 4 ]

(b) Explain why the pressure and temperature must be continuous functions. [ 3 ]

(c) Calculate the jump in density ∆ρ/ρ. Assume that the star behaves like

an ideal gas composed of a mixture of hydrogen and helium (see formula

sheet). [ 3 ]

(d) Assuming the amount of heavy elements remains constant throughout the

star, calculate the jump in opacity, ∆κ/κ, due to:

i) Kramers: κbf = Z(1 + X)ρT−3.5 . [ 2 ]

ii) Electron scattering: κe = 0.2(1 + X) . [ 2 ]

(e) In two or three sentences, explain why nuclear burning occurs only one

stage at a time in any given region of the star (i.e. hydrogen burning does

not mix with helium burning)? [ 3 ]

(f) In two or three sentences, explain why a star develops an onion shell-like

structure as it evolves. [ 3 ]
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B3. (a) Show that for a star in hydrostatic equilibrium, the pressure scales with

density as P ∝ ρ4/3 if we consider that the gas and radiation pressure ratio

is constant throughout the star. [ 6 ]

(b) What is the range of γad =
(
∂ log P
∂ log ρ

)
ad

in stars supported by gas and

radiation? If γad < 4/3 a star becomes dynamically unstable. Explain

why. [ 4 ]

(c) Which type of stars have γad ≈ 4/3? [ 2 ]

(d) What is the effect of partial ionisation (for example H 
 H+ + e−) on γad?

What is the effect of ionisation on the stability of a star? [ 3 ]

(e) Pair creation and photo-disintegration of iron have a similar effect on γad. In

what type of stars, and in what phase of their evolution, do these processes

play a role? [ 2 ]

(f) Explain in your own words what homologous contraction means and why

it is useful? [ 3 ]

END OF PAPER
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