
UNIVERSITY OF SOUTHAMPTON PHYS3010

SEMESTER 2 EXAMINATION 2012-2013

STELLAR EVOLUTION

Duration: 120 MINS (2 hours)

This paper contains 8 questions.

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Formula Sheet

Stellar structure equations:

dr
dm

=
1

4πr2ρ
dP
dm

= − Gm
4πr4

dl
dm

= εnuc

dT
dm

= − Gm
4πr4

T
P
∇ with ∇ =

{
∇rad = 3

16πacG
P
T 4

κl
m if ∇rad ≤ ∇ad

∇ad if ∇rad > ∇ad

Eddington luminosity:

LEdd =
4πcGM

κ
= 3.8 × 104

(
M
M�

)(
0.34 cm2/g

κ

)
L�

Diffusion equations:

F = −D∇U = −K∇T with K = D CV =
1
3
vlfpCV

Mean free path:

lfp =
1
κρ

=
1

nσ

Ideal gas equation of state:

Pgas = nkT =
R
µ
ρT =

k
µmu

ρT

Fermi momentum:

pF = h
(

3
8π

ne

)1/3
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Fermion equation of state (non-relativistic):

Pe,NR = KNR

(
ρ

µe

)5/3

with KNR =
h2

20mem
5/3
u

(
3
π

)2/3

= 1.0036 × 1013 [cgs]

Fermion equation of state (extremely relativistic):

Pe,ER = KER

(
ρ

µe

)4/3

with KER =
hc

8m4/3
u

(
3
π

)1/3

= 1.2435 × 1015 [cgs]

Boson equation of state:

Pγ =
1
3

aT 4

Mass-luminosity relationship for main sequence stars:

L
L�

=

(
M
M�

)3

Lane-Emden equation for a polytrope P = Kργ = Kρ(n+1)/n:

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0

with ρ = ρcw
n

and r = αz, where α =

√
n+1
4πG Kρ(1−n)/n

c .

Physical properties of the Lane-Emden equations:

R = αzn

M = 4πα3ρcΘn

K = NnGM(n−1)/nR(3−n)/n with Nn =
(4π)1/n

n + 1
Θ(1−n)/n

n z(n−3)/n
n

Pc = Wn
GM2

R4
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Numerical values for polytropic models with index n:
Table 4.1. Numerical values for polytropic models with index n.

n zn Θn ρc/  ρ Nn Wn

0 2.44949 4.89898 1.00000 . . . 0.119366
1 3.14159 3.14159 3.28987 0.63662 0.392699
1.5 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54.1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84
5 ∞ 1.73205 ∞ ∞ ∞

In order to simplify eq. (4.2), we define two new dimensionless variables w (related to the density)
and z (related to the radius) by writing

ρ = ρcwn, (4.5)

r = αz, with α =

(
n + 1
4πG

Kρ1/n−1
c

)1/2
. (4.6)

This choice of α ensures that the constants K and 4πG are eliminated after substituting r and ρ into
eq. (4.2). The resulting second-order differential equation is called the Lane-Emden equation:

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0. (4.7)

A polytropic stellar model can be constructed by integrating this equation outwards from the centre.
The boundary conditions (4.4) imply that in the centre (z = 0) we have w = 1 and dw/dz = 0. For
n < 5 the solution w(z) is found to decrease monotonically and to reach zero at finite z = zn, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. The only exceptions are n = 0,
1 and 5, for which the solutions are:

n = 0 : w(z) = 1 − z
2

6
z0 =

√
6, (4.8)

n = 1 : w(z) =
sin z
z

z1 = π, (4.9)

n = 5 : w(z) =
(
1 +

z2

3

)−1/2

z5 = ∞. (4.10)

The case n = 0 (γ = ∞) corresponds to a homogeneous gas sphere with constant density ρc, following
eq. (4.5). The solution for n = 5 is peculiar in that it has infinite radius; this is the case for all n ≥ 5,
while for n < 5 zn grows monotonically with n. For values of n other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see the accompanying computer
practicum). Table 4.1 lists the value of zn for different values of n, as well as several other properties
of the solution that will be discussed below.

47

Physical constants:
c = 3 × 1010 cm/s

k = 1.38 × 10−16 erg/K

R = 8.31 × 107 erg/K/mol

mu = 1.66 × 10−24 g

me = 9.11 × 10−28 g

h = 6.62 × 10−27 erg s

G = 6.67 × 10−8 cm3/g/s2

1eV = 1.60 × 10−12 erg

a = 7.56 × 10−15 erg/cm3/K4

σSB = 5.67 × 10−5 erg/cm2/K4/s

AU = 1.496 × 1013 cm

M� = 1.99 × 1033 g

R� = 6.96 × 1010 cm

L� = 3.9 × 1033 erg/s

T� = 5780 K
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Section A

A1. Explain why main sequence stars stars have a maximum mass limit. Derive an

approximate value for it. You can assume that the stellar opacity is entirely due

to electron scattering, i.e. κ = 0.34 cm2 g−1. [ 4 ]

A2. The figure below shows the Rosseland mean opacity as a function of temper-

ature and density. Darker grey shades indicate larger opacities. The stellar

structures of 1, 10 and 100 M� stars are drawn with thick black lines. Particular

regions of interest are marked with numbers inside squares on this diagram.

Please indicate:

(a) The phenomenon responsible for the drastic decrease of opacity in region

#1. [ 1 ]

(b) One of the two main sources of opacity occurring in region #2. [ 1 ]

(c) One of the two main sources of opacity occurring in region #3. [ 1 ]

(d) The main source of opacity occurring in region #4. [ 1 ]

(e) The main source of opacity occurring in region #5. [ 1 ]

A3. Complete the following nuclear reactions drawn from the first half of the CNO

cycle. Note that there might be more than one particle missing in place of the

”?”. [ 5 ]

12C + 1H → 13N + ?
13N → 13C + ?

13C + 1H → 14N + ?
14N + ? → 15O + ?

15O → 15N + ?
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1 Msun
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#1
#2

#3

#4

#5

15N + 1H → 12C + ?
15N + 1H → 16O + ?

A4. Explain two major effects played by convection in the evolution of stars. [ 3 ]

A5. Describe what role neutrinos play during (a) the main sequence phase, (b) the

red giant and the white dwarf evolution, and (c) the core-collapse supernova? [ 3 ]
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Section B

B1. (a) The figure below displays the regions in temperature-density plane de-

scribed by various equations of state. Find the equations describing the

boundaries between these regions, each of which is marked by a number

inside a square. You should express the relationship between T and ρ as

a numerical prefactor times a µ and µe. In the figure, ‘NR’ and ‘ER’ refer to

non-relativistic and extremely relativistic, respectively. [ 12 ]

−10 −5  0  5  10

 4

 6

 8

 10

log ρ
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g 
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radiation
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NR ER

#1

#2 #3

#4

(b) The Chandrasekhar mass provides the upper mass limit of white dwarfs at

which a Fermion gas reaches the relativistic limit. Show that this limit can

be expressed as: [ 6 ]

MCh = 5.836 µ−2
e M� .

(c) Name another effect, besides chemical composition, that can affect the

Chandrasekhar mass and briefly explain how it acts physically. [ 2 ]
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B2. Except for a handful of cases, solving the stellar structure equations requires

performing numerical integrations with appropriate boundary conditions. The

homology relations allow one to determine the overall properties of stars of

different masses, radii, temperatures and luminosities having similar equations

of state.

(a) Using the following dimensionless parameterisation of the mass:

x =
m1

M1
=

m2

M2
,

and the following homology identity for the radius:

r1(x)
R1

=
r2(x)
R2

,

along with the first equation of stellar structure for mass conservation,

show that there exists a very simple relationship between density, radius

and mass. What is the implication for (i) the density in a given mass shell,

(ii) the average density and (iii) the central density? [ 8 ]

(b) Use the same mass-radius parameterisation, along with the second equa-

tion of stellar structure for hydrostatic equilibrium, to find the relationship

linking pressure, mass and radius. What is the implication for (i) the pres-

sure in a given mass shell and (ii) the central pressure? [ 8 ]

(c) Combine the relationship that you have obtained in (a) with the one you

have obtained in (b) in order to derive a relationship between pressure and

density in stars having a similar equation of state. [ 4 ]
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B3. Convection is a very efficient transport mechanism in stars.

(a) In its simplest form, this criterion for stability against convection relates the

rate of change of density with respect to pressure in a star, d log ρ/d log P,

to that of an adiabatic change, (d log ρ/d log P)ad ≡ γ−1
ad . Derive the

condition for stability against convection.

In order to do so, consider of blob of matter having a certain density

and pressure that are equal to the ambient stellar density and pressure.

Imagine that this blob is transported upward fast enough such that it

experiences an adiabatic change to adapt to the new ambient conditions

while its surroundings remain in hydrostatic equilibrium.

i) Sketch a diagram of the physical situation presented above. [ 2 ]

ii) On a log ρ − log P plot, display the physical situation presented above.

This involves drawing the curve for an adiabatic change as well as one

for the unstable and one for the stable situation. [ 3 ]

iii) Derive the equation for stability against convection. You are not

required to make a full mathematical derivation; a pseudo-derivation

based on arguments drawn from the diagram and the plot you made

are sufficient. [ 5 ]

(b) The Schwarzschild criterion expresses the convection stability in a purely

radiative, chemically homogeneous star. It relates the radiation pressure

gradient to the adiabatic pressure gradient as follows:

∇rad =
3

16πacG
P
T 4

κl
m
> ∇ad .

Name two possible conditions that occur in a star that will lead to a violation

of the Schwarzschild criterion. For each of them, specify the type of

star/situation in which this condition would happen. [ 6 ]

(c) Describe the thin shell instability. What evolution stage is it mostly relevant

for? What kind of stellar mass does it pertain to? [ 4 ]

Copyright 2013 c© University of Southampton Page 9 of 10



10 PHYS3010

END OF PAPER
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