
UNIVERSITY OF SOUTHAMPTON PHYS6003W1

SEMESTER 1 EXAMINATION 2014-2015

ADVANCED QUANTUM PHYSICS

Duration: 120 MINS (2 hours)

This paper contains 9 questions.

Answer all questions in Section A and only two questions in Section B.

Section A carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on it.

Section B carries 2/3 of the total marks for the exam paper and you should

aim to spend about 80 mins on it.

An outline marking scheme is shown in brackets to the right of each question.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.
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Section A

A1. Write down the adjoint of the following expression involving bras and kets, in

which ai are complex scalars, and Ω̂ and Λ̂ are operators:

a∗1|v〉 + a2|w〉〈p|q〉 + a3Ω̂Λ̂|r〉 + a4Λ̂|u〉 . [ 2 ]

A2. Consider the arbitrary ket |u〉 =
∑n

i=1 ui|i〉, where {|i〉} is an orthonormal basis.

Show that ui = 〈i|u〉 for all values of i. Using this result, then prove that∑n
i=1 |i〉〈i| = Î, where Î is the identity operator. [ 6 ]

A3. The kets in the set {|i〉} have non-zero (and finite) norm, and are mutually

orthogonal (i.e. 〈i| j〉 = 0 for i , j). Show that they form a set of linearly

independent vectors. [ 6 ]

A4. The φ dependent part of the position space wavefunction (in spherical co-

ordinates) of an eigenvector of orbital angular momentum is given by eimφ,

where m is the quantum number associated with the z component of orbital

angular momentum. Show that m has to be an integer. [ 3 ]

A5. Explain the difference between a classical bit and a qubit, giving an example of

the latter. [ 3 ]
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Section B

B1. A simple harmonic oscillator in one dimension is defined by the Hamiltonian

Ĥ = h̄ω(a†a + 1/2) ,

where the raising and lowering operators are given respectively by

a† =

√
mω
2h̄

x̂ −
i

√
2mωh̄

p̂ ,

a =

√
mω
2h̄

x̂ +
i

√
2mωh̄

p̂ ,

with [x̂, p̂] = ih̄ and [a, a†] = 1. Let |n〉 be a normalised (i.e. 〈n|n〉 = 1)

eigenvector of the Hamiltonian with an energy eigenvalue of En (i.e. Ĥ|n〉 =

En|n〉).

(a) Show that [Ĥ, a] = −h̄ωa and [Ĥ, a†] = h̄ωa†. [ 4 ]

(b) Using the commutation relations in (a), show that a|n〉 is an eigenvector

of Ĥ with eigenvalue En − h̄ω, and that a†|n〉 is an eigenvector of Ĥ with

eigenvalue En + h̄ω. [ 4 ]

(c) Using the relations

a†|n〉 =
√

n + 1|n + 1〉 and a|n〉 =
√

n|n − 1〉,

calculate explicitly the expectation values 〈 p̂〉, 〈p̂2〉, 〈x̂〉 and 〈x̂2〉 for a

simple harmonic oscillator in the state |n〉. Obtain an expression for the

product ∆x∆p as a function of n (where ∆x =
√
〈x̂2〉 − 〈x̂〉2 etc), and

confirm that it complies with Heisenberg’s uncertainty relation. [ 8 ]

(d) Now consider the eigenvectors |n〉 and |m〉 where n , m. Find the values

of n and m for which the inner product 〈n|x̂2|m〉 vanishes and the values for

which this inner product does not vanish (show your working). [ 4 ]
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B2. Consider the following relations for angular momentum operators:

L̂+ = L̂x + iL̂y L̂− = L̂x − iL̂y ,

L̂+|lm〉 = h̄
√

(l − m)(l + m + 1)|l,m+1〉 L̂−|lm〉 = h̄
√

(l + m)(l − m + 1)|l,m−1〉 ,

L̂z|lm〉 = mh̄|lm〉 L̂2|lm〉 = l(l + 1)h̄2|lm〉 .

For a system with orbital angular momentum l = 1 the eigenvectors |lm〉 can

be labelled by the eigenvalue m alone, and so one has three eigenvectors |1〉z,
|0〉z, and | − 1〉z for m = 1, 0,−1 respectively.

(a) Using the above relations for the angular momentum operators, show that

the matrix representation of L̂x for l = 1 in the basis of eigenvectors of L̂z

and L̂2 is given by

L̂x =
h̄
√

2

 0 1 0
1 0 1
0 1 0

 . [ 7 ]

(b) Now find the eigenvalues and (normalised) column vector representations

of the eigenvectors of L̂x, neglecting global phase factors. [ 10 ]

(c) Calculate the probability that a measurement of L̂x will give zero for a

system that is in the state

|ψ〉 =
1
√

14

 1
2
3

 . [ 3 ]
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B3. (a) State the four postulates of quantum mechanics. For concreteness,

consider a one-dimensional system e.g. a particle moving along the x-

axis. [ 6 ]

(b) An operator Ω̂ in an n dimensional Hilbert space has eigenvectors |ωi〉

with corresponding eigenvalues ωi, where i is an integer from 1 to n. The

expectation value of Ω̂ is denoted by 〈Ω̂〉. Starting from the expression

〈Ω̂〉 =

n∑
i=1

P(ωi)ωi ,

where P(ωi) is the probability of obtaining the eigenvalue ωi from a

measurement of Ω̂, show that 〈Ω̂〉 can be written as

〈Ω̂〉 = 〈ψ|Ω̂|ψ〉 ,

where |ψ〉 is the state vector for the system. [ 5 ]

(c) Explain what is meant by an “eigenbasis” of a Hilbert space. Now consider

the case of two of the eigenvalues of the operator Ω̂ in (b) above being

degenerate i.e. ω1 = ω2 = ω. Show that there are an infinite number of

eigenbases for this Hilbert space. [ 4 ]

(d) Now consider another operator Λ̂ with eigenvectors |λi〉, and correspond-

ing eigenvalues λi with no degeneracy. Suppose that Λ̂ commutes with Ω̂

i.e. [Λ̂, Ω̂] = 0. Show that {|λi〉} are also eigenvectors of Ω̂. [ 5 ]
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B4. (a) Write down an expression for the most general state (|ψ〉AB) in a Hilbert

space VA ⊗ VB, where VA and VB are Hilbert spaces with orthonormal

bases {|i〉A} and {| j〉B} respectively. Then give the condition for this general

state to be separable and the condition for this state to be entangled. [ 4 ]

(b) Suppose that Alice has a single qubit state |φ〉 = α|0〉 + β|1〉 which she

wishes to teleport to her friend Bob. To do this she creates an entangled

state

|ψ〉 =
1
√

2
(|00〉 + |11〉) ,

keeping the first (left) qubit and sending the second (right) qubit to Bob.

Show that twice the product state |φ〉|ψ〉 can be written as

2|φ〉|ψ〉 = |B0〉(α|0〉 + β|1〉) + |B1〉(α|1〉 + β|0〉)

+|B2〉(α|0〉 − β|1〉) + |B3〉(α|1〉 − β|0〉),

where

|B0〉 =
1
√

2
(|00〉 + |11〉) , |B1〉 =

1
√

2
(|01〉 + |10〉) ,

|B2〉 =
1
√

2
(|00〉 − |11〉) , |B3〉 =

1
√

2
(|01〉 − |10〉) . [ 6 ]

(c) Now show that the operators

Î = |0〉〈0| + |1〉〈1| , X̂ = |0〉〈1| + |1〉〈0| ,

Ŷ = |0〉〈1| − |1〉〈0| , Ẑ = |0〉〈0| − |1〉〈1| ,

can be used to transform the single qubit parts of the product state above

into |φ〉. That is, show that

Î(α|0〉 + β|1〉) = |φ〉 , X̂(α|1〉 + β|0〉) = |φ〉 ,

Ŷ(α|1〉 − β|0〉) = |φ〉 , Ẑ(α|0〉 − β|1〉) = |φ〉 . [ 4 ]
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(d) Explain step by step how Alice and Bob can make use of the above results

to devise a scheme for teleporting the original qubit |φ〉 without either of

them knowing its state. [ 6 ]

END OF PAPER
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