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Section A

A1. Give the mathematical condition for a set of vectors |V1〉, |V2〉,....|Vn〉 to be

linearly independent. [1]

Determine whether the following vectors are linearly independent or not (show

your working):

(a)

|V1〉 =


1

2

1

 |V2〉 =


0

1

0

 |V3〉 =


−1

0

−1

 [2]

(b)

|V1〉 =


2

0

0

 |V2〉 =


0
√

3
2

−1
2

 |V3〉 =


0

1
√

3

 [2]

A2. Suppose that the vectors |0〉, |1〉, |2〉 form an orthonormal basis for a vector

space. Determine whether the following are Hermitian operators on the space

(show your working):

(a)

|0〉〈1| − i|1〉〈0| [1]

(b)

|0〉〈0| + i|1〉〈0| − i|0〉〈1| + |2〉〈2| [1]
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A3. Show that Hermitian operators have real eigenvalues. [2]

Then show that eigenvectors which correspond to distinct eigenvalues of a

Hermitian operator are orthogonal. [2]

A4. Assuming that the state |ψ(t)〉 is normalised, (i.e. 〈ψ(t)|ψ(t)〉 = 1) find an

expression for the time derivative, d〈Q̂〉
dt , of the expectation value of some time-

independent operator Q̂. [3]

Comment on the physical significance of the case when Q̂ = Ĥ, where Ĥ is

the time-independent Hamiltonian. [1]

A5. Suppose that the Hamilitonian of quantum system, Ĥ, does not depend

explicitly on time (t). Its eigenvalues Ei corresponding to the orthonormal

eigenstates |Ei〉 are thus time-independent: Ĥ|Ei〉 = Ei|Ei〉. A generic state

|ψ(t)〉 can be expanded using the eigenbasis of the Hamiltonian:

|ψ(t)〉 =
∑

i

ai(t)|Ei〉 with (i = 1, 2, ....n) .

Find the explicit form of the coefficients ai(t) in terms of ai(0), and hence write

down an expression for the time evolution of |ψ(t)〉. [3]

If at time t = 0 the generic state coincides with one of the eigenstates of the

Hamiltonian, |ψ(0)〉 = |E j〉, then show that the subsequent time evolution is

given by |ψ(t)〉 = exp(−iE jt/h̄)|E j〉. Comment on the physical significance of

the phase exp(−iE jt/h̄) if |ψ(0)〉 = |E j〉. [2]

TURN OVER
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Section B

B1. A simple harmonic oscillator has a Hamiltonian, Ĥ = 1
2(X̂2 + P̂2)h̄ω, where X̂

and P̂ are position and momentum operators that satisfy [X̂, P̂] = i. Define the

operators a = (X̂ + iP̂)/
√

2 and a† = (X̂ − iP̂)/
√

2.

(a) Show that [a, a†] = 1 and Ĥ = (a†a + 1
2)h̄ω. [6]

(b) Defining N = a†a, and letting |n〉 be a normalised eigenvector of N with

eigenvalues n, show that n ≥ 0. [3]

(c) Then show that Na†|n〉 = (n+1)a†|n〉. Explain why a†|n〉 cannot equal zero.

[6]

(d) Now show that Na|n〉 = (n − 1)a|n〉. Explain why n must be a positive

integer or zero. [5]



5 PHYS6003W1

B2. Hermitian angular momentum operators Ji (for i = 1, 2, 3, and h̄ = 1) obey

the commutation relations by [Ji, J j] = iεi jkJk, where εi jk changes sign under

interchange of any two indices and ε123 = 1. The ladder operators J+ and J−

are defined as J+ = J1 + iJ2 and J− = J1 − iJ2.

(a) Show that J+ = [J3, J+] and J− = −[J3, J−]. [4]

Now consider the normalised state of angular momentum | j,m〉, where

J2| j,m〉 = j( j + 1)| j,m〉

and

J3| j,m〉 = m| j,m〉.

(b) By evaluating the expectation values 〈J3〉 and 〈J2
3〉 show that ∆J3 = 0,

where ∆J3 =

√
〈J2

3〉 − 〈J3〉
2. [5]

(c) Evaluate 〈J2〉. [1]

(d) Using the commutation relations given in (a), as well as the commutator

[J2, J±] = 0, show that

J+| j,m〉 = N+| j,m + 1〉 [3]

and

J−| j,m〉 = N−| j,m − 1〉, [3]

where N+ and N− are normalisation constants (which do not need to be

explicitly determined).

(e) Show that 〈J1〉 = 〈J2〉 = 0. [4]

TURN OVER
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B3. The operator Ŝ, which represents the spin of a spin-1
2 particle (such as the

electron) may be written as Ŝ=(Ŝ x, Ŝ y, Ŝ z) where

Ŝ x =
h̄
2

 0 1

1 0

 Ŝ y =
h̄
2

 0 −i

i 0

 Ŝ z =
h̄
2

 1 0

0 −1


are matrix representations of the (x, y, z) components of the spin operator.

(a) Find the eigenvalues (sup
x and sdown

x ) and normalised eigenvectors (| ↑〉 and

| ↓〉) of the operator Ŝ x i.e.

Ŝ x| ↑〉 = sup
x | ↑〉, Ŝ x| ↓〉 = sdown

x | ↓〉. [5]

Neglect phase factors.

(b) Compute the expectation value of the y and z-component of the particle’s

spin if it is in the state | ↑〉 . [6]

(c) If the particle is in the state

|ψ〉 = a

 5

12


determine the normalisation factor a, where a is real and positive. [1]

What is the probability to find the particle with spin-up along the x-axis? [4]

(d) Suppose that after a measurement of the Ŝ x operator on the state |ψ〉 the

particle is found with spin up (along the x-axis). What is the probability to

find the electron with spin down along the z-axis? [4]
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B4. A simple harmonic oscillator in one dimension is defined by the Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2 ,

where [x̂, p̂] = ih̄.

The raising and lowering operators are given respectively by

a† =
√

mω
2h̄

x̂ −
i

√
2mωh̄

p̂ ,

a =
√

mω
2h̄

x̂ +
i

√
2mωh̄

p̂ .

(a) Show that the ground state (n = 0) wavefunction is given by

ψ0(x) = ce−mωx2/2h̄ . [6]

(b) If ψ0(x) is normalised then show that (up to a phase)

c =
(mω
πh̄

)1/4
. [6][

note that
∫ ∞

−∞

e−αx2
dx =

√
π

α

]

(c) Then find explicit coordinate space wavefunctions (un-normalised) for the

first two excited states (i.e. n = 1 and n = 2). [8]

END OF PAPER


