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SEMESTER 1 EXAMINATION 2014-2015

COSMOLOGY AND THE EARLY UNIVERSE

Duration: 120 MINS (2 hours)

This paper contains 8 questions.

Answer all questions in Section A and one question in each of Section B

and Section C.

Each section carries 1/3 of the total marks for the exam paper and you should

aim to spend about 40 mins on each.

A Sheet of Physical Constants is provided with this examination paper.

Only university approved calculators may be used.

A foreign language translation dictionary (paper version) is permitted provided

it contains no notes, additions or annotations.

The default system of units is SI. You may give expressions in natural units,

but you should state when you start to use them and note when you change

unit systems. Throughout the paper the scale factor is normalized in such a

way that at the present time a0 = 1. The Friedmann equation is

H2 =
8 πG
3 c2 ε −

k c2

a2 R2
0
.
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Section A

A1. Define and write down the expression of the Hubble distance at the present

time. Give a numerical estimate (1 significant figure) using H0 = 70 km s−1 Mpc−1.
[ 5 ]

(seen problem) The Hubble distance at the present time is defined as that

distance where the recession cosmological velocity equals the speed of light.

[1]

Recession cosmological velocities are described by the Hubble’s law

vpr = H dpr ,

where H ≡ ȧ/a is the expansion rate and its value at present is given by the

Hubble constant.

[1.5]

Therefore, the proper distance at present dpr(t0), corresponding to recession

velocities equal to the speed of light (the Hubble distance or radius at the

present time usually indicated with RH,0), is given by

RH,0 = c H−1
0

[1]

In numbers

RH(t0) '
3 × 105 km s−1

70 km s−1 Mpc−1 ' 4 Gpc .

[1.5]

A2. Consider an empty Universe within Friedmann cosmological models. Is it

an open, flat or closed Universe? Motivate your answer. Using H0 =
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70 km s−1 Mpc−1 and using 1 Mpc = 3 × 1019 Km, calculate the age of the

Universe, properly defined, in years (2 significant figures). [ 6 ]

(seen problem) From the Friedmann equation it can be immediately seen that

for an empty Universe (ε = 0) one necessarily has k = −1, meaning that the

empty Universe is open.

[2]

From the Friedmann equation one has H2 = const/a2 = H2
0/a

2

[2]

Therefore, one immediately has, since H ≡ ȧ/a, that ȧ = H0, and therefore,

a(t) = H0 t, having defined the origin of time as that particular time when a = 0.

With this definition one has t0 = H−1
0 = (3/7) × 1018 s ' 14 × 109 yr.

[2]

A3. Consider an inflationary stage occurring in the time interval [ti, tf], with tf − ti =

10−32 s and number of e-folds N = 100. What is the value of the expansion rate

Hi during inflation (in s−1)? [ 5 ]

(seen problem) During inflation the scale factor experiences a (de Sitter)

exponential expansion

a(t) = ai eHi (t−ti) ,

[2]

(unseen) The number of e-folds N is defined as

N ≡ ln
a f

ai

and is therefore related to ∆t = tf − ti simply by

N = Hi ∆t .
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[2]

(unseen) Therefore, one has simply Hi = N/∆t = 1034 s−1

[1].

A4. Explain what is meant by Big Bang Nucleosynthesis (1 sentence). Consider

Tin, the initial (and highest) temperature during the expansion of the Universe

within the ΛCDM model. The value of kB Tin has to be assumed much greater

than a certain value in order to reproduce correctly the measured primordial

abundances. What is this value (1 significant figure) and what is its physical

significance? [ 4 ]

(bookwork)

With BBN it is meant that early Universe stage during which the primordial

nuclear abundances where synthesised.

[1]

(seen problem) In order to explain the observed primordial abundances the

initial temperature of the Universe has to be much greater than ∼ 1 MeV.

[1]

(seen problem) Below kB Tfr ∼ 1 MeV, neutrons-protons interconversion

reactions freeze out and, therefore, only above this temperature one can

assume a thermal equilibrium initial value for the neutron-to-proton abundance

ratio a necessary ingredient not to spoil successful agreement between BBN

predictions and measured primordial nuclear abundances.

[2]
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Section B

B1. (a) Consider the Friedmann equation. What is the name and the physical

meaning of a, H, ε and k (no more than 1 sentence for each quantity)? [ 4 ]

(bookwork) The scale factor a describes the dynamics of the Friedmann-

Robertson-Walker metric determining how proper distances scale during

the expansion (Hubble’s law).

[1]

H is the expansion rate and in terms of a is given by H = ȧ/a.

[1]

ε is the total energy density

[1]

k is the curvature parameter and determines the geometry of the Fried-

mann Universes.

[1]

(b) What values can k take and to what kinds of Universe do they respectively

correspond? Consider a Friedmann cosmological model with an admixture

of radiation, matter and non-vanishing cosmological constant. Is the

value of k unambiguously determining the fate of the Universe expansion?

Motivate your answer. [ 5 ]

(bookwork) k can take three values: k = −1, 0,+1.

[1.5]

(bookwork) They correspond respectively to an open, flat and closed

Universe.

[1.5]
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(seen problem) No, in the presence of a positive non-vanishing cosmo-

logical constant the value of the curvature parameter is not sufficient to

determine the fate of the expansion of the Universe.

[1]

(seen problem) The reason is that in the presence of a positive cosmologi-

cal constant, giving a repulsive gravitational effect, even though space can

be closed, the expansion of the Universe can last indefinitely.

[1]

(c) What is the physical meaning of the critical energy density εc?

(bookwork) It is the energy density corresponding to a flat Universe (k = 0).

[1.5]

Derive an expression for εc starting from the Friedmann equation.

(bookwork) Starting from the (given) Friedmann equation

H2 =
8 πG
3 c2 ε −

k c2

a2 R2
0
.

one can immediately see that for k = 0 the total energy density has to be

given by

ε(t)|k=0 = εc(t) ≡
3 c2 H2(t)

8 πG
.

[1.5]

How is the energy density parameter Ω defined?

(bookwork) The energy density parameter is defined as

Ω =
ε

εc
.

[1]

[ 4 ]
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(d) Show that the Friedmann equation can be recast in terms of Ω0 and H0 as

ȧ2(t) = H2
0 Ω0 a2(t)

ε(t)
ε0

+ H2
0 (1 −Ω0) . [ 7 ]

(seen problem) From the definition of Ω and of εc we can recast the

Friedmann equation as

H2 = H2 Ω −
k c2

a2 R2
0

[1.5]

(seen problem) If we now express this equation at the present time, we

find

H2
0 = H2

0 Ω0 −
k c2

R2
0
,

(where we used a0 = 1) and therefore the curvature term can be expressed

in terms of H0 and Ω0 as

−
k c2

R2
0

= H2
0 (1 −Ω0) .

[2]

(seen problem) Inserting the expression for k c2/R2
0 one finds

H2 =
8 πG
3 c2 ε +

H2
0 (1 −Ω0)

a2

and multiplying all terms by a2

ȧ2 =
8 πG
3 c2 ε a2 + H2

0 (1 −Ω0) .

[1.5]

(seen problem) We can then express 8 πG/(3 c2) = H2
0/εc,0 and write

ȧ2(t) = H2
0 a2(t)

ε

εc,0
+ H2

0 (1 −Ω0) .
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and finally, writing εc,0 = Ω0/ε0, we find

ȧ2(t) = H2
0 Ω0 a2(t)

ε

ε0
+ H2

0 (1 −Ω0) .

[2]
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B2. (a) Write down the cosmological fluid equation in any equivalent form you

prefer. Show that for a fluid with equation of state p = w ε, where

w = const, the total energy density depends on the scale factor a as

ε(a) =
ε0

a3 (1+w) .

[ 4 ]

(bookwork) The cosmological fluid equation can be written as

d(ε a3)
dt

= −p
d a3

dt
,

or equivalently as

ε̇ = −3
ȧ
a

(ε + p) .

[2]

(seen problem) In the case of a fluid with p = w ε, from the second form,

one obtains
ε̇

ε
= −3 (1 + w)

ȧ
a
,

that, considering that Ẋ/X = d ln X/dt, immediately yields

ε(a) =
ε0

a3 (1+w) .

[2]

(b) Derive the acceleration equation combining the Friedmann equation with

the fluid equation. [ 5 ]

(seen problem)

Starting from the Friedmann equation (given on the cover page) and
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multiplying both RH and LH sides by a2, one obtains

ȧ2 =
8 πG
3 c2 ε a2 −

k c2

R2
0
.

[1]

(seen) At this point, differentiating with respect to time, the curvature term

cancels out and

2 ȧ ä =
8 πG
3 c2

[
ε̇ a2 + 2 ȧ a ε

]
.

[1]

Factorising a term ε a2 one then obtains

2 ȧ ä =
8 πG
3 c2 ε a2

[
ε̇

ε
+ 2

ȧ
a

]
.

[1]

Using the fluid equation one can now plug into the last equation ε̇/ε =

−3 [(ε + p)/ε] (ȧ/a) obtaining straightforwardly the acceleration equation

ä = −
4 πG
3 c2 (ε + 3 p) a .

[2]

(c) Consider now flat one-fluid Friedmann cosmological models with an

equation of state p = w ε and w = const > −1.

– Define the age of the Universe t0 and derive an expression in terms of

w and H0.

– Derive an expression for the scale factor a(t), in terms of t0, H0 and w.

– What is that particular value of w such that t0 = H−1
0 ?

– Which is the other (non-flat) Friedmann cosmological model with t0 =

H−1
0 ?
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[ 11 ]

(seen problem) We can first of all plug the given expression for ε(a)in the

case p = w ε into the Friedmann equation for a flat Universe (k = 0),

finding
ȧ
a

=

√
8 πG ε0

3 c2 a−
3
2 (1+w) ,

where we have only considered the expansion solution.

[2]

From the Friedmann equation we can also replace ε0 with H0,

ε0 =
3 H2

0 c2

8 πG
,

(the critical energy density at the present time) in way that one can write

a
1+3w

2 da = H0 dt .

[2]

Assuming that there is a time when a = 0, the age of the Universe is

defined as the time elapsed from this time conventionally set as the origin

of time. Integrating between 0 and t0 one finds for the age of the Universe

t0

t0 =
2 H−1

0

3 (1 + w)
,

that is indeed defined for w > −1.

[2]

Going back and integrating between 0 and a generic time t one then finds

a(t) =

(
t
t0

) 2
3 (1+w)

,

Copyright 2015 c© University of Southampton Page 11 of 20

TURN OVER



12 PHYS6005W1

that indeed for t = 0 implies a(t) = 0 for w > −1.

[2]

(seen problem) The particular value of w implying t0 = H−1
0 is w = −1/3.

[1]

(seen) The other simple model that gives t0 = H−1
0 , is the empty Universe

for ε = 0 since one can see from the Friedmann equation that ȧ = H0,

implying t0 = H−1
0 .

[2]
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Section C

C1. (a) What are the three main observational features of the Cosmic Microwave

Background (CMB) radiation spectrum? [ 5 ]

(bookwork)

Spectrum. The spectrum of the CMB radiation is very close to a

thermal equilibrium spectrum described by the Planckian spectrum with a

temperature T = 2.725 K. The deviations ∆ε/ε in the intensity are smaller

than 10−4.

[1]

Dipole. The temperature of the CMBR spectrum presents a dipole

anisotropy ∆T/T ∼ 10−3 that is explained by the Doppler effect due to the

motion of the Earth with respect to the comoving system with a velocity

v ∼ 370 km s−1 that is the result of the composition of different velocities

(Earth around the Sun, the solar system around the galactic center, the

Galaxy in the Local Group, the infall of the Local Group toward the Hydra-

Centaurus super-cluster).

[1.5]

Anisotropies. After the dipole anisotropy is subtracted, the temperature

fluctuations at higher multipoles are found to be much smaller, ∆T/T ∼

10−5. (Experiments have a finite resolution and therefore they can measure

the anisotropies only on angular scales larger than the resolution. If the

correlation function is expanded in Legendre polynomials, they measure

the multipole moments Cl.) Current observation measure Cl up to l ' 1400
and find that the Cl’s (the angular power spectrum) exhibit a series of

peaks characterised by their position, at some value l(i)peak, and by the

height.

[2.5]

(b) Determine (1 significant digit) the value of kB T RM
eq , where T RM

eq is the
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temperature at the matter-radiation equality time. Use for the radiation

energy density parameter at the present time ΩR,0 ' 0.75 × 10−4, for the

matter energy density parameter ΩM,0 ' 0.32, for the Boltzmann constant

kB = 0.86 × 10−4 K eV−1.

[ 3 ]

(seen problem) The value of the scale factor at the matter-radiation equality

time is simply given by

aRM
eq =

ΩR,0

ΩM,0
' 2.34 × 10−4 .

[1.5]

Considering that T ∝ 1/a and that T0 ' 2.725 K, one then finds

kB T RM
eq =

kB T0

aRM
eq
' 1.0 eV .

[1.5]

(c) Considering the observational features of the CMB radiation and the

properties of photons, explain why the distribution function of relic photons

(giving the average occupation number of each quantum state) is very well

approximated by the Bose-Einstein distribution,

fγ,0(p) =
1

e
c p

kB T0 − 1
.

[ 3 ]

(seen problem) Photons of the CMB radiation (relic photons) are exper-

imentally found to be well described by a thermal equilibrium spectrum

and, therefore, their distribution function can be well approximated by an

equilibrium distribution function. [1]

Since photons are bosons, their equilibrium distribution is the Bose-

Einstein distribution.
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[1]

Since photons are massless, their energy is simply given by E = p c.

[1]

(d) Derive the number density of relic photons at the present time in terms

of the CMB radiation temperature T0. Calculate its numerical value with

two significant figures using for the Boltzmann constant kB = 0.86 ×
10−4 K eV−1.

Hint: You might find useful∫ ∞
0

dx
x2

ex − 1
= 2 ζ(3) ' 2.4 .

[ 7 ]

(seen problem) The calculation can be more conveniently made in the

Natural System (c = kB = h̄ = 1). In this case for relic photons the number

density can be calculated from the distribution function as

nγ,0 = gγ

∫
d3 p

(2 π)3

1
ep/T0 − 1

.

where gγ = 2 is the number of the spin degrees of freedom (or the spin

degeneracy) of photons.

[2]

Integration over the solid angle gives then

gγ

∫
d3 p

(2 π)3

1
ep/T0 − 1

=
1
π2

∫ ∞
0

dp
p2

ep/T0 − 1
.

[1]

Changing the variable of integration from p to x ≡ p/T0, one finds

nγ,0 =
2 ζ(3)
π2 T 3

0 ,
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where we used the given integral∫ ∞
0

dx
x2

ex − 1
= 2 ζ(3) ,

where ζ(x) is the ζ-Riemann function and ζ(3) ' 1.2. Plugging back the

fundamental constants in the International system one can write

nγ,0 =
2 ζ(3)
π2

(kB T0)3

(h̄ c)3 .

[2]

Using kB = 0.86 × 10−4 K eV−1 and T0 = 2.725 K, one then finds (2

significant figures)

nγ,0 =
2 ζ(3)
π2

(kB T0)3

(h̄ c)3 '
2.4
π2

(0.86 × 10−4 × 2.725)3

(197 × 106 × 10−13)3 cm−3 ' 410 cm−3 .

[2]

(e) Derive the distribution of the relic photons at the matter-radiation decou-

pling time tRM
dec . Explain the physical meaning of the result (1 sentence).

[ 2 ]

In the early Universe the momentum of a free particle like relic photons

scales like ~p(t) = ~p0/a.

[1]

(seen problem) Since particles are free, the occupation number of each

quantum state does not change but only their associated momentum.

Therefore, one has

fγ(~p, t) = fγ(~p0, t0) = fγ(~p a, t0) =
1

e
c p a

kB T0 − 1
,

that is still a Bose-Einstein distribution with T (t) = T0/a meaning that

expansion preserves the thermal equilibrium distribution of photons
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[1]
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C2. (a) What are the main features of the ΛCDM model? Specify in particular what

is the matter-energy budget at present, distinguishing the contributions

from ordinary baryonic matter and the contribution from Dark Matter. [ 5 ]

(seen problem) The ΛCDM model is a flat model (Ω0 = 1) with an

admixture of a radiation component (ΩR0 ∼ 10−4), a matter component

and a cosmological constant-like fluid (a particular kind of dark energy)

component.

[3]

Within the matter component only 1/6 is explained by ordinary baryonic

matter, while the remaining 5/6 have to be ascribed to the presence of

some mysterious form of Dark Matter.

[2]

(b) The cosmological redshifts of supernovae indicate the approximate rela-

tion

ΩΛ,0 ' 1.5 ΩM,0 + 0.25 .

Write down the complementary relation linking ΩM,0 to ΩΛ,0 coming from

the study of the CMBR anisotropies. What is the specific feature in the

CMB radiation anisotropies that strongly supports it? Combining the two

relations, calculate the values of ΩΛ,0 and ΩM,0 (1 significant figure). [ 5 ]

(bookwork) From the position of the first peak in the CMBR acoustic peaks,

we deduce that the Universe is flat and therefore Ω0 = ΩM,0 + ΩΛ,0 = 1.

[2.5]

(seen problem) Inserting ΩΛ,0 = 1 − ΩM,0 in the relation from the

supernovae observations, one straightforwardly finds

2.5 ΩM,0 = 0.75⇒ ΩM,0 ' 0.3⇒ ΩΛ,0 = 0.7 .

[2.5]
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(c) Discuss qualitatively which astronomical observations support the exis-

tence of Dark Matter. What is the interpretation of the nature of Dark

Matter more strongly supported by the current astronomical and cosmo-

logical observations? [ 5 ]

(bookwork) More directly we infer the existence of a Dark Matter from

anomalous motions of stars in Galaxies and of Galaxies within clusters

and superclusters of Galaxies: they are too fast to remain bound under

the gravitational attraction of just baryonic matter. The Dark Matter plays

therefore the role of a cosmic glue. [2.5]

(seen problem) The astronomical observations strongly favour the exis-

tence of a new elementary particle, stable on cosmological scales, that

would constitute the Dark Matter.

[2.5]

(d) Most of the visible matter in Galaxies is concentrated within a few kpc from

the centre. Show how the Newton’s law of gravity implies that the speed

of a star at a distance R & 10 kpc, i.e. far from the central bulge, should

decrease like v(R) ∝ 1/
√

R in the absence of Dark Matter. [ 5 ]

(seen problem) Star motions can be approximated as circular and therefore

the absolute value of the radial acceleration of a star at distance R is

related to the velocity simply by a = v2/R.

[2]

(bookwork) The gravitational attraction from the mass M of the galactic

central bulge gives an acceleration

a =
G M
R2

[2]

(seen problem) Imposing that gravitational attraction of the central bulge
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explains the radial acceleration one has therefore

v2 ∝ R−1 ⇒ v ∝ 1/
√

R .

[1]

END OF PAPER
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