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Section A

A1. Calculate the lowest temperature that can be achieved by the Doppler cooling

method using the D2 line of Sodium (m=23 amu) at 589 nm, which has a radiative

lifetime of 16 ns. Calculate also the average velocity and de Broglie wavelength

of the atoms at this temperature. [5]

A2. Write down the relationship between the standard deviation ∆n of the photon

number distribution and the average photon number n̄ for light sources described

by sub-Poissonian, Poissonian and super-Poissonian statistics. Draw a diagram

comparing the three different distributions for a given mean photon number of n

= 100. [5]

A3. A quantum dot emitting at 930 nm is placed at the centre of a resonant micropillar

cavity containing material of refractive index 3.5 (GaAs). The modal volume is

1.8 × 10−18 m3 and the spectral width ∆λ of the resonant mode is 0.18 nm.

Calculate the Purcell factor. What is the physical significance of this result? [6]

A4. An attenuated light beam from an Ar laser operating at 514 nm (2.41 eV) with a

power of 0.1 pW is detected by a photo-counting system of quantum efficiency

10%, with the time interval set at 0.5 s. Calculate the average number of photons

counted. [4]
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Section B

B1. This question is about the second order correlation function used to quantify

the temporal coherence of classical light. Consider a light source with constant

average intensity such that 〈I(t)〉 = 〈I(t + τ)〉 and for which the time-scale of the

intensity fluctuations is determined by the coherence time τc.

(a) Write down the definition of the second order correlation function g(2)(τ).

How is it different from the first order correlation function g(1)(τ)? [2]

(b) Show that in general g(2)(τ) = 1, for τ � τc. [Hint: Start with the general

expression for the intensity: I(t) = 〈I〉 + ∆I(t) and substitute into g(2)(τ).] [5]

(c) Discuss g(2)(τ) for the case τ = 0. Discuss perfectly coherent light and

chaotic light in this case. [6]

(d) Draw a diagram of the dependence of g(2) on τ for chaotic and for perfectly

coherent light. [2]

(e) Evaluate g(2)(0) for a monochromatic light wave with a sinusoidal intensity

modulation such that I(t) = I0(1 + A sin(ωt)), with |A| ≤ 1. [5]

TURN OVER
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B2. This question is about squeezed states of light and classical waves at a 50:50

beam splitter.

Figure 1: Input and output field on a 50:50 beam splitter.

(a) Explain what amplitude squeezing is and how it is represented by a phasor.

Why will light with very strong quadrature squeezing not exhibit amplitude

squeezing, no matter how the axes of the uncertainty ellipse are chosen?

Use quadrature uncertainty diagrams for a coherent state and strongly

quadrature-squeezed light as part of your argument. [6]

(b) Draw and explain why strongly amplitude-squeezed light have an uncertainty

area shaped like a banana on a quadrature uncertainty diagram. [2]

(c) Squeezed light can be analysed by homodyne detection using a beam

splitter. Consider now classical waves and a 50:50 beam splitter as shown

in Fig.1. Let the phase shifts on the transmission and reflection be written

φt
i and φr

i , respectively, where i = 1, 2. Assume that E1 and E2 are real.

Draw diagrams for the possible phase shifts on transmission and reflection

for both input fields and verify that the total output fields must be in the form:

E3 =
1
√

2
[E1 exp (iφt

1) + E2 exp (iφr
2)],

E4 =
1
√

2
[E1 exp (iφr

1) + E2 exp (iφt
2)].

[8]
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(d) Consider the same situation as in (c) and, by consideration of conservation

of energy, show that:

cos(φr
2 − φ

t
1) + cos(φr

1 − φ
t
2) = 0.

[Hints: The input fields are real. Start by considering the quantity (E3E∗3 +

E4E∗4). Then use the fact that energy conservation means that the total input

power must be equal to the total output power.] [4]

TURN OVER
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B3. This question is about non-classical light: photon number states and coherent

states.

(a) The field quadratures in the photon number presentation can be represented

using the photon creation â† and annihilation â operators as:

X̂1 =
1
2

(â† + â),

X̂2 =
i
2

(â† − â).

Evaluate the commutator [X̂1, X̂2], and hence find the uncertainty product

(∆X̂1)2(∆X̂2)2, given that [â, â†] = 1. [6]

(b) Show that the coherent state:

|α〉 = exp (−|α|2/2)
∞∑

n=0

αn

(n!)1/2 |n〉,

is correctly normalized, where |n〉 is the photon number state. Start with

evaluating the Dirac bracket 〈α|α〉 and make use of the orthonormality of

number states 〈n|n′〉 = δnn′. [Hint: You may need to recall, the Taylor

expansion of e+|α|2 =
∑∞

n=0
(α∗α)n

(n!) ]. [5]

(c) For the coherent state |α〉 with α = |α|eiφ, show that 〈α|X̂1|α〉 = |α| cos φ,

and 〈α|X̂2|α〉 = |α| sin φ. Then show that uncertainty ∆X1 = 1/2, and draw

a phasor diagram to illustrate this result. [Hint: Make use of â|α〉 = α|α〉 and

〈α|â† = 〈α|α∗ and (∆O)2 = 〈Ô2〉 − 〈Ô〉2.] [6]

(d) Show that a photon number state |n〉 is an eigenstate of the operator (X̂2
1 +

X̂2
2) with eigenvalue (n + 1/2), by using equations: â†|n〉 = (n + 1)1/2|n + 1〉

and â|n〉 = n1/2|n − 1〉. [3]

END OF PAPER


