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Section A

A1. Calculate the coherence time for the 589.0nm line of a sodium lamp operating at

100◦ C if the line is Doppler-broadened. The mass of sodium is 23amu. [4]

A2. Write down the density matrix for a thermal ensemble of two-level atoms at

temperature T. What is the general definition of the density matrix for two-level

systems with N1 atoms in the lower state and N2 atoms in the upper state? What

happens to the off-diagonal elements of the density matrix if an initially coherent

superposition of two states decoheres? [3]

A3. A source emits a regular train of pulses, each containing exactly two photons.

State and explain the value of g(2)(0). Show that g(2)(0) = 1 for a coherent state.

Explain how amplitude squeezed light can help to reduce noise in some systems

below shot noise. Further explain further why strongly amplitude squeezed light

would have a uncertainty area line shaped like a banana. [6]

A4. A cavity of modal volume 1.9 ·10−11m3 is tuned resonant to one sodium hyperfine

transition at 589nm with transition dipole moment µ12 = 2.1 · 10−29Cm. Draw the

scheme of the experiment. Calculate the vacuum Rabi splitting frequency for a

cavity containing 200 atoms. [4]

A5. Evaluate the Bose-Einstein condensation temperature for 10,000 87Rb atoms in

a trap of angular frequency 103rad/s, and find the temperature at which more

than half of the atoms are in the condensate. [3]
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Section B

B1. The LIGO gravitational wave interferometer is basically a Michelson interferome-

ter with a 50:50 beam splitter. The relative displacement δL of mirrors M1 and M2

(attached to arms of length L) due to gravitational waves will be detected. The

operation wavelength is 1064nm and the light power is 300W. We are interested

in the sensitivity of LIGO.

(a) Working with the number-phase uncertainty relation, what is the phase

uncertainty of the light? [7]

(b) What is the minimum displacement δL that can be detected? [2]

(c) Calculate the minimum strain that can be detected for an interferometer arm

length L = 4km. Assume that the light is traveling 50 times along L. [2]

(d) Write down the output electric field for a Michelson interferometer with a

50:50 beam splitter and a general phase factor ∆φ. Include an expression

for the relative length of the arms ∆L = L2 − L1. Assume that the input field

consists of parallel rays from a linearly polarized monochromatic source of

wavelength λ (and k = 2π/λ) and amplitude E0. Draw the setup. Where do

the field maxima in the interference pattern occur ? [5]

(e) For a beam spitter with two input beams, show the relation:

cos (φr
2) + cos (φr

1) = 0,

is fulfilled in the general case that the relative phase shift between the

reflection of the two input beams ∆φ = π, with φr
1 and φr

2 being the phases

TURN OVER
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due to reflection of the two input beams on the beam splitter. Draw the two

cosine functions. [4]
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B2. Consider two dimensionless quadrature fields X1 and X2. In the photon number

representation we can introduce the associated operators by using creation â†

and annihilation â operators :

X̂1 =
1
2

(â† + â),

X̂2 =
1
2

i(â† − â).

(a) Evaluate the commutator [X̂1, X̂2], using [â, â†] = 1. [5]

(b) Find the uncertainty product (∆X1)2(∆X2)2. [Remark: The result should be

in agreement with the uncertainty relation: ∆X1∆X2 ≥ 1/4]. [2]

(c) The two field quadratures can be directly related to generalized position and

momentum coordinates q and p, respectively, by:

X̂1 = (
ω

2h̄
)1/2q,

X̂2 = (
1

2h̄ω
)1/2 p,

where ω is the angular frequency of a harmonic oscillator. Derive starting

from ∆X1∆X2 ≥ 1/4 the Heisenberg uncertainty relation for x and px. [You

may use relations q =
√

mx and p = px/
√

m.] [4]

(d) For the vacuum field the uncertainties for the two quadratures are identical:

∆Xvac
1 = ∆Xvac

2 = 1/2.

Draw the phasor diagram for the vacuum state. [2]

TURN OVER
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(e) Calculate the magnitude of the vacuum field in a cavity volume of 1mm3 at

500nm. [2]

(f) Draw the phasor diagrams of quadrature squeezed states: the squeezed

vacuum and the phase-squeezed light. Draw the experimental setup for de-

tection of quadrature-squeezed vacuum states by the balanced homodyne

technique. Why is the output phase sensitive? [5]
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B3. A pulsed laser beam is focused to a spot of radius 1µm on a gas of atoms with a

dipole moment of µ12 = 10−29Cm at the laser frequency.

(a) Derive a formula for the pulse duration at FWHM. Calculate the pulse

duration. Hint: Start by using a Gaussian field: E0(t) = Epeak exp (−t2/τ2),

calculate the intensity at FWHM. [6]

(b) Use the formula for the pulse area to measure the rotation of the Bloch vector

Θ =
µ12
h̄

∫ + inf
− inf E0(t)dt to calculate the peak energy of the laser pulse Epeak. [4]

(c) Now calculate the pulse energy required to rotate the Bloch vector by π/2

radians for Gaussian pulses with a duration (FWHM) of 1ps. Hint: The pulse

energy is the product of the area of the beam times the integral over the laser

intensity. [5]

(d) If the system is initially in the ground state, find the state of the system at the

end of the pulse. Draw the Bloch sphere. [5]

END OF PAPER


