HSP9

PHYSICS & ASTRONOMY HEALTH AND SAFETY POLICY, ORGANISATION, AND RELATED PROCEDURES

AMENDMENT RECORD

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Amendment Details</th>
<th>Author</th>
<th>Issue Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26/01/09</td>
<td>1st Published Edition</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25/08/09</td>
<td>2nd Edition (with name amendments)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31/08/10</td>
<td>3rd Edition (Revised)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8/09/11</td>
<td>4th Edition (Titles, Names, New HoS & Organisation revisions)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10/9/12</td>
<td>5th Edition (Titles, Names, Tel. Numbers & Organisation revisions)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4/9/13</td>
<td>6th Edition (Name amendments, and faculty/academic unit changes.)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18/8/2014</td>
<td>7th Edition (Organisation revision, Name changes & Document Template revisions)</td>
<td>CEM/JPH</td>
<td></td>
</tr>
</tbody>
</table>

This document form part of the University of Southampton’s OHSAS18001:2007 Occupational Health and Safety Management System and compliance with its requirements is mandatory.
CONTENTS OF HSP9

Pages 1&2. School of Physics & Astronomy Building/Emergency plan
Page 3. University Health & Safety Policy
Page 4&5. School of Physics & Astronomy Health & Safety Policy
Pages 6. Health & Safety Induction Checklist
Page 7. H&S Policy Note: Manual Handling
Page 8. Fire warden Monthly Check Sheet
Pages 9 - 11. Accident Reporting & Report Form
Pages 12-15. Appendix 2 – Local Organisation
Pages 16-24. Appendix 3 – Local procedures
Back Pages - Generic Risk Assessments

Useful Telephone Numbers

Professor P A Charles (Head of Physics & Astronomy) Ext. 23599

Mr. C. E. Miles (Physics & Astronomy Safety Officer) Ext. 22078

Safety Office
26 University Road, Highfield 02380 593277

Dr. A. White - University Directory of Health & Safety Ext. 29160

Dr. N. Lloyd - University Safety Officer/FPSE Ext. 25850

University Security
- Non-Emergency (24 hours) Control room Ext. 22811
- Emergency line (24 hours) Ext. 3311
- Email: unisecurity@soton.ac.uk

University & School Website Address

University of Southampton: http://www.southampton.ac.uk
Health & Safety: http://www.southampton.ac.uk/healthandsafety
School of Physics & Astronomy: http://www.phys.soton.ac.uk
If you notice a fire, you should immediately raise the fire alarm, by breaking the glass, at the nearest manual fire call point. This can be done using your elbow or shoe. The alarm is a continuous bell. On hearing the alarm, you should immediately leave the building by the quickest route, closing doors as you leave. If you notice a fire, you should immediately raise the fire alarm, by breaking the glass, at the nearest manual fire call point. This can be done using your elbow or shoe. The alarm is a continuous bell. On hearing the alarm, you should immediately leave the building by the quickest route, closing doors as you leave.
Health & Safety Policy Statement

The University of Southampton is committed to excellence in all our activities, and wants to change the world for the better through our research, teaching and enterprise activities and our staff and students’ contribution to society.

The effective management of Health & Safety is an important element in our success. Good Health & Safety performance protects our staff, students, and others from harm. It supports all our activities by preventing disruption to our business, the loss of valuable assets, and harm to our reputation. It is also consistent with our commitment to social responsibility.

We will achieve good Health & Safety performance by:

- Doing all that is reasonably practicable to prevent injury and work-related ill health.
- Efficient operational and strategic planning for Health & Safety.
- Positive engagement with staff and students on Health & Safety issues, to develop competence and gain commitment.
- Seeking continual improvement in our Health & Safety management and performance.
- Compliance with all applicable legal requirements for Health & Safety.
- Using the good practice of the BS OHSAS 18001:2007 Health & Safety Management System.
- Internal audit, and other monitoring as necessary, to measure progress, and to identify the corrective and preventive actions needed to maintain that progress.

Prof Don Nutbeam
Vice-Chancellor

Dr Gill Rider
Chair of University Council

04 April 2014
Health and Safety Policy Document

It is policy of the School of Physics & Astronomy, to comply with the requirements of the University BS OHSAS18001 Health and Safety Policy and related documentation, and to strive for continuous improvement in standards of health and safety. To this end, I as the Head of the School of Physics & Astronomy and my management team will ensure that:

- Adequate resources are made available to staff and students to ensure they can discharge their duties thereby ensuring the health, safety and welfare of all members of the School and others who may be affected by our activities

- There is regular, effective communication to inform staff, students and other stakeholders of health and safety matters, and effective mechanisms that allow for the reporting to managers of any concerns relating to health, safety and welfare issues

- Staff and students are given the necessary information, instruction, training and supervision to both inform them of their duties and responsibilities and to ensure they are competent to discharge their duties safely and without risk to the health of themselves or others.

To ensure health and safety in the School everyone must play their part by discharging their responsibilities and co-operating fully with others who have health and safety duties placed on them. To assist me and my management team in implementing this policy, I have appointed Mr. C E Miles as School Safety Officer.

Health and safety documentation is made readily available to all who need it, as follows:

- A copy of this policy statement is available from Mrs. C French, at the School Reception, Room 5007 & The School Safety Officer, Mr. C E Miles, Room 1019

- A full set of health and safety documentation is kept as controlled documentation by the School Safety Officer, Mr. C E Miles, Room 1019
• A full set of health and safety documentation is available on the University of Southampton website, at http://www.southampton.ac.uk/healthandsafety

• Local, specific health and safety documentation is kept at the workplace to which it relates.

In addition to the information given to staff and students, all contractors and visitors will be made aware of the general policy at the earliest opportunity, and will be informed of any specific requirements before commencing activities.

This policy will be kept up to date to take account of changes. To ensure this, the policy and the way that it has been implemented will be reviewed every year.

Signed ……………..(Head)

Date …………………18/8/2014..

Those failing to conform to their Health & Safety responsibilities may be reported to the Head of School.
REQUIRED INFORMATION

Name of new starter

Signature

Date

Section name

Signature

Date

Status: STAFF TEMP

Name of Manager

Signature

Date

All employees should know:

☐ Where there is a copy of the H&S Policy statement, and have read it.

☐ Who their H&S representative on the Safety Committee is.

☐ Who to talk to if they have any concerns on H&S matters.

☐ Where to view a copy of the H&S management system and why this is important to them.

☐ They have to complete H&S induction training (CBT and Local).

☐ What the fire and other emergency arrangements are for their location.

☐ What the first aid arrangements are for their location.

☐ What internal incidents need to be reported; when, where, how and to whom to report.

☐ Where the procedures, risk assessments and other written arrangements relating to their work are kept and how to access them.

☐ That as a result of the above, what are the hazards and appropriate control measures for their work?

☐ That each individual is responsible for their own safety and, as such, the following of these control measures is mandatory.

☐ That they should not handle or operate equipment they have not been trained and authorized to use as well as what to do if they are asked to do so.

☐ That all electrical equipment should be safety inspected, tagged, and not used unless the tag is present and in date. Who to call, if they are not authorized to inspect or tag equipment.

☐ How to recognize a potentially hazardous substance and where to go for advice.

☐ How to lift and carry heavy objects correctly.

☐ That if they see a fellow worker/contractor acting unsafely they should take action to stop it by either talking directly to the individual or some other appropriate person.

☐ The importance of observation and concentration when carrying out any task to ensure that no unexpected conditions occur.

☐ Their duty in law to cooperate with their employee in following procedures and rules laid down for their health and safety.

☐ The welfare arrangements for their location (smoking, toilets, drinking water, clothing storage, eating).

☐ The policy and procedures for reporting bullying and/or threatening behaviour from staff or third parties.

☐ How to access Occupational Health arrangements when required.

☐ That there is a free counseling service available and how to access it.

☐ The importance of keeping corridors, passageways and fire exits clear of all furniture, waste, machinery and other materials.

☐ For those people who travel on company business: how to stay safe whilst travelling, including basic health and emergency arrangements when away from home.

In addition, for employees working in offices:

☐ They have to complete the online DSE training and assessment.

☐ How to adjust their chair, Visual Display Unit, and other work station equipment to obtain a comfortable and ergonomically correct working arrangement as well as how to get help if they need it.

☐ The importance of keeping their work area clean and free from trip hazards.

In addition, for Employees working outside and in laboratory and workshop environments:

☐ What PPE they require for their job and how to look after it.

☐ The importance of good skin hygiene and hydration, particularly in relation to hands.
Health & Safety Policy Note: Manual Handling

Injuries caused by lifting, carrying and other manual handling activities account for approximately one third of accidents reported to Safety & Occupational Health every year. It is therefore important that manual handling activities are properly assessed before they are carried out, and that risks associated with such activities are reduced to a tolerable level. This Policy Note describes what manual handling is, how manual handling can be identified, who would need specific training, and where to get manual handling training.

What is Manual Handling & how can it be identified?

Manual Handling is the transporting or supporting of loads by hand or by bodily force, this includes:

- lifting and putting down
- pushing and pulling
- carrying and moving
- dragging.

Manual handling is covered by the Manual Handling Operations Regulations 1992. These regulations apply to a wide range of manual handling activities, including (as above) lifting, lowering, pushing, pulling or carrying. The load may be either animate, such as a person or an animal, or inanimate, such as a box or a trolley.

Who would need specific training?

Your manager or supervisor should identify manual handling through a risk assessment of the task, where the activity is considered and suitable controls are put in place. All hazards must be identified and communicated to all relevant staff. It can then be decided if manual handling training is required depending on the duration, etc.

Training is important, but on its own it cannot overcome:

- lack of mechanical aids
- unsuitable loads
- unsatisfactory working conditions.

Training should cover:

- manual handling risk factors and how injuries can occur
- how to carry out safe manual handling, including good handling technique
- appropriate safe systems of work for the individual’s tasks and environment
- use of mechanical aids
- practical work to allow the trainer to identify and correct anything the trainee is not doing safely.

Such training not only encourages correct technique in day-to-day activities, e.g. carrying photocopier paper, it also informs individuals, thereby empowering them to recognise their own limits, and helping them to identify when more detailed assessments might be required.

Where do I get manual handling training?

Safety & Occupational Health can deliver two training courses to suit your needs. The Lifting & Moving Awareness training course would suit an individual who has light lifting as part of their main duties. Please note this is an awareness training session only. The Manual Handling Risk Assessment course in manual handling is for the person carrying out the risk assessment, e.g. the manager or supervisor.

Further reading

HSE brief guide on manual handling: http://www.hse.gov.uk/pubns/indg143.pdf
Other HSE publications on this subject: http://www.hse.gov.uk/pubns/manlinde.htm
For further information contact your Faculty/Service Safety Officer.
Fire Wardens
Monthly Fire Safety Check Sheet

<table>
<thead>
<tr>
<th>Building…………………………………</th>
<th>Level/Zone…………………………………</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspected by……………………………</td>
<td>Date………………………………………</td>
</tr>
</tbody>
</table>

Means of Escape
- Are all escape routes free of obstructions and combustibles?
- Are escape routes clearly indicated by signs?
- Are self-closing devices on fire doors operating correctly?
- Are fire doors generally in good order?
- Are fire doors kept closed and not wedged open?

Fire Exits
- Are Fire Exit doors clear and unobstructed?
- Are Fire Exit doors easily and immediately open able without a key?

Fire Warning System
- Are all break glass call points unobstructed and clearly visible?
- Are all break glass call points available for immediate use?

Emergency Lighting
- Are obvious emergency lights in working order (indicator lamp lit)?

Fire Safety Notices and Signs
- Are all notices and signs in place and clearly visible i.e. ‘Fire Exit’, ‘Push bar to open’ etc.?
- Are they in good order?
- Are ‘Fire Action’ notices adjacent to all Call Points?
- Are Assembly Points clearly indicated?

Fire Fighting Equipment
- Are extinguishers in place and indicated by signs?
- Are security pins and seals in place?
- Are extinguishers easily accessible?

Comments/Actions

Signed (Fire Warden)…………………………………
Print Name…………………………………………………
Date…………………………………………………………

Please send this form to the School Professional Service Safety Officer on completion. Completed forms should be kept on file for a minimum of a year.
Accident reporting, Accident report form, Safety & Emergency

Report an incident using our online form below:
http://www.southampton.ac.uk/healthandsafety/incidents.html

<table>
<thead>
<tr>
<th>Service</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Control Room</td>
<td>Emergency number: 3311 or 023 8059 3311</td>
</tr>
<tr>
<td>(24 hours)</td>
<td>Non-emergency number: 22811 or 023 8059 2811 (external)</td>
</tr>
</tbody>
</table>

Public Emergency Services 91-999

Student Services +44(0)2380 599 599 Internal: 29599

Estates and Facilities Helpdesk
27474 Office hours weekdays between 8.00am and 4.00pm or Telephone Central Control Room ext. 22811 between 4.00pm and 8.00am weekdays and on weekends and holidays. efhelp@soton.ac.uk

Nightline (8pm - 8am)
Phone lines are staffed from 8pm to 8am during term time. Call on 023 8059 5236 or if you're in Halls, you can call free on (78)25236.

Switchboard (8.30am - 5.00pm) 0 or 023 8059 5000

University Health Service 23539 or 023 8055 7531

Highfield Health 25545 or 023 8059 5545

All emergencies should be notified to the Central Control Room (CCR) on extension 3311.
http://www.southampton.ac.uk/estates/services/security/

Accident reporting

Please use the Incident report form to record any accidents, submit the form to the SOH and send to your Faculty/Service Health & Safety Officer.

To investigate a serious incident use http://www.southampton.ac.uk/healthandsafety/documents/Incident%20Investigation%20Report.docx

What is an accident/ incident/ near miss? This would normally be when someone has been injured or taken ill at work including visitors and students on our campuses. Incidents would include slips, spillages, fire exits being blocked etc. Near miss would normally include incidents that have not involved an injury but could have e.g. a roof or ceiling tile falling down.
What if I have an accident?

1. Contact your line manager asap (no later than 8 hours) and report the circumstances of the accident using the Incident report form.
2. Your line manager will then review the facts to determine if any remedial action is necessary, preferably within 24 hours.

I am manager who has had an accident reported to me what do I need to do?

1. Ensure the basic facts of the accident/incident/near miss are recorded. This must be reviewed by you with people involved in the incident within 24 hours e.g. witnesses, injured party, first aiders and Safety Officer. The SO will monitor all accident trends within their areas and feedback to senior managers.
2. In some incidents it may also be advantageous to involve a local H&S Union representative.
3. If the incident is serious it is advisable to immediately notify the Central H&S Group for support and assistance. This would normally be the case if the accident resulted in someone being taken to hospital, or resulted in them being off sick as a result of the accident. Some of these incidents will be reportable to the H&S Executive but the SOH will process this.

After the accident has been reported

1. Line managers and those involved will review the facts and any associated risk assessments to determine what follow up action is required. This can take the form of a more detailed investigation or simply altering a working practice each circumstance will, be different. This should be done with 5 working days of the accident occurring.
2. If remedial actions are required these should be added to your existing H&S plans and followed up as part of your Faculty/Service H&S Committee. This would normally be developed in conjunction with your Faculty/Service Safety Officer.

CCR

The CCR is staffed 24 hours a day, 365 days a year and will on receipt of an emergency call notify the relevant emergency service(s) and university support staff. In the event of a serious accident, the ambulance service should be contacted immediately by dialling (91) 999 before calling a first-aider and notifying the Central Control Room (CCR) on extension 3311.

Please use the form below to report any H&S incidents. Please access it at: http://www.southampton.ac.uk/healthandsafety/incidents.html

You will need to log in first with your University ID and password. Once the ‘submit’ button is clicked and the confirmation screen appears you cannot edit the form and must click the ‘submit’ button once again. Clicking back will remove any data from the form.

For any incidents that have occurred on ‘Non-University’ sites/property or occurred outside of the University’s sites and campuses. You should enter 98 as the property number which will display ‘Non-University Premises’. The space field can be left blank.
For any incidents where the location is external to a building and occurs on a road or path. You should enter 99 as the property number which will display ‘University Paths and Roads’. The space field can be left blank.

Report an incident

Information

<table>
<thead>
<tr>
<th>Requestor:</th>
<th>1440137 - Harris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Number:</td>
<td></td>
</tr>
</tbody>
</table>

Location

<table>
<thead>
<tr>
<th>Property:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space:</td>
<td></td>
</tr>
</tbody>
</table>

Description of Location:

Details of Incident

<table>
<thead>
<tr>
<th>Incident date & time:</th>
<th>13/09/2014 14:44 (dd/MM/yyyy h:mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injured person (internal):</td>
<td></td>
</tr>
<tr>
<td>Injured person (external):</td>
<td></td>
</tr>
<tr>
<td>Type of incident:</td>
<td></td>
</tr>
<tr>
<td>Immediate cause of incident:</td>
<td></td>
</tr>
<tr>
<td>Type of injury:</td>
<td></td>
</tr>
<tr>
<td>Environmental impact:</td>
<td>None</td>
</tr>
</tbody>
</table>

Details of incident, treatment received and actions taken. (500 characters Max)

Upload documents/Images

<table>
<thead>
<tr>
<th>Name</th>
<th>File</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No results found
APPENDIX 2 – Local organisation

Ultimate responsibility for health and safety is defined within the University and the Physics & Astronomy Policy. For routine health and safety matters, the line of responsibility follows the normal managerial lines in Physics & Astronomy as indicated. In particular, those with supervisory roles are responsible for the health and safety of those they supervise.

All members of Physics & Astronomy have a responsibility to co-operate with their colleagues to achieve a healthy and safe workplace, and to take reasonable care of themselves and others. They are required to work in accordance with these local arrangements. Anyone noticing a health and safety problem that they are not able to correct should immediately report the problem to their manager or someone else in authority.
Specific health and safety responsibilities are as follows:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Person responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk assessment</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Health and safety training</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Accident reporting and investigation</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Planned inspections</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Fire drills</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td></td>
<td>MR. T E PERKINS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Electrical inspecting and testing</td>
<td>Mr. C E Miles, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>Mr. G Savage, Room 1037 Ext. 22055</td>
</tr>
<tr>
<td></td>
<td>Mr. G Taylor, Room 1037 Ext. 22055</td>
</tr>
<tr>
<td></td>
<td>Mr. J Harris, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td></td>
<td>Mr T Perkins, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td></td>
<td>Mr. Z Webber, Room 2016 Ext. 26695</td>
</tr>
<tr>
<td></td>
<td>Mr. P Martin, Room 3099 Ext. 22065</td>
</tr>
<tr>
<td></td>
<td>Mr. M Ashley, Room 3087 Ext. 22065</td>
</tr>
<tr>
<td></td>
<td>Mrs. S Barkovic 3087 Ext. 22065</td>
</tr>
<tr>
<td>Authorising purchases, Including all</td>
<td>MR. C E MILES, Room 1019 Ext. 22078</td>
</tr>
<tr>
<td>Safety Equipment.</td>
<td></td>
</tr>
<tr>
<td>Liaising with Estates and Facilities</td>
<td>MR. C E MILES, Room 1019 EXT. 22078</td>
</tr>
<tr>
<td>and contractors</td>
<td></td>
</tr>
<tr>
<td>Producing Personal Emergency Evacuation</td>
<td>MR. C E MILES, Room 1005 Ext. 22040</td>
</tr>
<tr>
<td>Plans (PEEPS)</td>
<td>MR. J P HARRIS, Room 1041 Ext. 23936</td>
</tr>
<tr>
<td>Disposing of Hazardous Waste</td>
<td>MR. I HANNEY Room 1061, Ext. 22043</td>
</tr>
</tbody>
</table>
Other Health & Safety Related personnel, within Physics & Astronomy:-

| Providing first-aid | MR. D GRIMSEY, Room 1005 Ext. 22040
| | MR. M SCULLY, Room 1001 Ext. 23932
| | MR. M ASHLEY, Room 3087, Ext. 22065
| | MRS. S BARKOVIC, Room 3087, Ext. 22065 |

| Assisting in emergency evacuation | MR. C E MILES - SENIOR FIRE WARDEN/PHYSICS & ASTRONOMY SAFETY OFFICER
| | MR. TOM PERKINS - SENIOR FIRE WARDEN/EMERGENCY LIFT OPERATOR
| | MR. I HANNEY
| | MR. G SAVAGE - EMERGENCY LIFT OPERATOR
| | MR. Z WEBBER
| | MR. G TAYLOR - EMERGENCY LIFT OPERATOR
| | MR. P KINSEY - EMERGENCY LIFT OPERATOR
| | MR. P MARTIN
| | MR. C NASH/MR. J COOK
| | MRS. S BARKOVIC
| | MR. M ASHLEY
| | MR. S HARRIS
| | DR. A BIRD
| | DR. C CORBARI/DR. C SONES
| | MR. G SMITH
| | MR. D OLIVER
| | DR. J MACKENZIE
| | MRS. R CHURCHILL
| | MRS. C STONER
| | MS. C MAPSTONE
| | MRS. N BROOKS
| | MRS. C FRENCH
| | DR. T FREEGARDE
| | MR. J HARRIS

| Display Screen Assessors | MRS. C FRENCH, Room 5007, Ext. 22093

| Advice on the use of radioactive substances | DR. M NEWTON, Room 5055, Ext. 27548

<table>
<thead>
<tr>
<th>Service</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advice on the use of lasers</td>
<td>DR. H ULBRICHT, Room 5027, Ext. 22073</td>
</tr>
</tbody>
</table>
| Advice on biological safety | SAFETY & OCCUPATIONAL HEALTH, 26 University Road, Highfield. Tel 02380 593277
Dr. N Lloyd Ext. 25850
Dr. R Lockey Ext. 26850 |
| Advice on genetic modification | N/A |
| Manual Handling | MR. J P HARRIS, Room 1041, Ext. 23936 |
| Audits | MR. C E MILES, Room 1019, Ext. 22078
MR. J P HARRIS, Room 1041, Ext. 23936 |
APPENDIX 3: Local Procedures

Procedures covered by central documentation

<table>
<thead>
<tr>
<th>Activity</th>
<th>Procedure</th>
</tr>
</thead>
</table>
| Risk assessment | Carried out in accordance with Safety & Occupational Health (SOH) (General Risk Assessment), HSP 4 (COSHH), and HSP5 (Manual Handling).
A Risk Assessment course is held in October, for New Staff, Post-Doctoral Fellows & Post Graduate Students by Safety & Occupational Health (SOH)
Risk Assessment Forms to be completed before any experimental work where risks are involved, and displayed within the laboratory or workplace.
Risk Assessments must be reviewed annually, or when there is a significant change in activity, of the initial risks assessed, or when new members of the experimental group arrive.
If initial risk assessed identifies a chemical hazard, i.e. a substance which is irritant, harmful, corrosive, flammable or toxic, then a COSHH assessment must be completed in addition to the Risk Assessment. |
| Health and safety training | Carried out in accordance with HSP10.
Risk Assessment Course held every October in conjunction with Safety & Occupational Health (SOH).
Manual Handling & D.S.E (Display Screen Equipment) Courses will be held annually within Physics & Astronomy. If you wish to attend or be put on these courses, see the Physics & Astronomy Safety Officer, Mr. C E Miles Room 1019 Ext. 22078.
Health & Safety training info can be obtained via The Physics & Astronomy safety officer (Mr. C E Miles).
Further courses are advertised on the Safety & Occupational Health (SOH) website http://www.southampton.ac.uk/healthandsafety |
<table>
<thead>
<tr>
<th>Activity</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident reporting and investigation</td>
<td>Carried out in accordance with HSP1. All accidents, incidents or investigations must be reported to Colin Miles (Physics & Astronomy Safety Officer) Room 1019 Ext. 22078</td>
</tr>
<tr>
<td>Health and safety inspections</td>
<td>Carried out in accordance with HSP 8. A General building Safety Inspection is carried out every 6 months, by the Physics & Astronomy Safety Officer Mr. C E Miles, with a University Safety Officer. Laser Safety Inspections carried out every 6 months, by the Physics & Astronomy Laser Safety Officer Dr. H Ulbricht. Re-inspections are then carried out 2 weeks after the General Safety and Laser Safety inspections, to see if any of the necessary changes advised by the Safety Officers have been carried out. Radiation Inspection every 6 Months, by the Physics & Astronomy Radiation Safety Officer Dr. M Newton.</td>
</tr>
<tr>
<td>Fire safety and emergency procedures (including procedures for assisting those with mobility difficulties)</td>
<td>Detailed in the Emergency Response Manual (developed in accordance with HSP14). Emergency Response Manual (HSP14) information can be obtained from the Physics & Astronomy Safety Officer (Mr. C E Miles) Room 1019 Ext 22078 Emergency Response manuals (In Emergency use only) can be found at Level 1 Fire Alarm Panel, and Level 2 (Main Entrance) Fire Alarm Panel. On hearing the fire alarm, make your way as efficiently as possible to the “Assemble Point” outside the front foyer (on Level 2 – East side) between Shackleton Building 44, and Physics & Astronomy Building 46.</td>
</tr>
<tr>
<td>Purchasing</td>
<td>Carried out in accordance with Finance Regulations. All materials and equipment purchased by Physics & Astronomy, or by individuals for use at work, must comply with the standard rules and regulations prescribed by law and university</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>All safety equipment to be reviewed, prior to purchase by the Physics & Astronomy Safety officer (Mr. C E Miles)</td>
<td>All safety equipment to be reviewed, prior to purchase by the Physics & Astronomy Safety officer (Mr. C E Miles)</td>
</tr>
<tr>
<td>Work undertaken by Estates and Facilities or contractors</td>
<td>Carried out in accordance with the University Policy for Contractor Health & Safety control. All Contractors and Personnel from Estates and Facilities must report to Mr. C E Miles before any work to be carried out within Physics & Astronomy. A list of approved contractors can be found on the procedures page of the Safety & Occupational Health (SOH) website. http://www.southampton.ac.uk/healthandsafety/contractor/ Contractors are to obtain a Contractors Information Leaflet from the (Mr. C E Miles Room 1019 Ext. 22078), and sign before work commences and when work finishes.</td>
</tr>
<tr>
<td>Supervising academic teaching and research work</td>
<td>Carried out in accordance with guidance on the role of the academic supervisor, available from Safety & Occupational Health (SOH). (Form SG 11)</td>
</tr>
<tr>
<td>Consultation on health and safety issues</td>
<td>Physics & Astronomy Health & Safety committee meet every Semester. Agenda items are then raised on the Senior Management Meetings, which are held once per term.</td>
</tr>
</tbody>
</table>

Procedures that need to be covered by local documentation

<table>
<thead>
<tr>
<th>Activity</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical safety</td>
<td>The following arrangements for electrical safety apply to all electrical equipment in use in Physics & Astronomy, including personal items. Only electrical equipment that is properly installed and maintained should be used. The indication that</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>equipment has been properly maintained is that a label is attached to each item bearing a date after which it should no longer be used. Items not bearing such a label, or where the date on the label has been passed, should be withdrawn from use and given to the appropriate supervisor or manager. All portable appliances will be regularly inspected and, where necessary, subject to electrical test. Everyone should routinely check that their electrical appliances are not damaged and that there are no obvious signs of misuse such as damaged or discoloured plug tops and worn cables. Any item that becomes faulty should be taken out of service and either discarded or sent to Mr. G Savage or Mr. G Taylor (Electronics Workshop) for repair. Alternatively Mr. C E Miles (Physics & Astronomy Safety Officer) Mr. J Harris, Mr. T Perkins, Mr. Z Webber, Mr. P Martin, Mr. M Ashley, & Miss S Barkovic all hold City and Guilds P.A.T certificates, and can offer advice on faulty or damaged equipment. Equipment and furniture should be sited so as to avoid the need for leads to trail across floors. Where these cannot be avoided, proprietary rubber strips should be used to reduce the risk of tripping.</td>
</tr>
<tr>
<td>Children</td>
<td>Children visiting Physics & Astronomy must be under the immediate and close supervision of a responsible adult at all times. They are not permitted in any workshop or laboratory where experimental or other work is being undertaken unless the specific permission of the Head of Academic Unit has been given.</td>
</tr>
<tr>
<td>General office safety</td>
<td>For ROUTINE office activities, provided that the arrangements in the next paragraph are followed, there will be no significant health or safety risk, and no further assessment of the work is necessary. Non-routine office activities should be assessed, and where any significant hazards are identified, the results of the assessment should be recorded. Falls are the most prolific cause of injury in offices, accounting for almost half of all office accidents. Next come the handling and lifting of goods, materials and</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure</td>
</tr>
<tr>
<td>Use of display screen equipment</td>
<td>All display screen users must receive training in the use of such equipment, including the correct setup of a workstation. Individuals should use the HSE DSE checklist issued at this training to assess the suitability of their own workstation and report any shortcomings to their line manager, DSE assessor or Safety Officer. VDU Workstation checklists available from the Physics & Astronomy Safety Officer, Mr. C E Miles Room 1019, Ext. 22078 or the Physics & Astronomy Display Screen Assessor, Mrs C French, Room 5007, Ext. 22093 All Checklist must be completed by the individual using the workstation and returned to the Display Screen Assessor Mrs C French, Room 5007, Ext. 22093</td>
</tr>
<tr>
<td>Manual Handling</td>
<td>All those involved in Manual Handling activities that are outside of the Generic Manual Handling Risk Assessment must seek further advice/training from the Manual Handling Risk Assessment Assessor Mr J P Harris Room 1041, Ext 23936 Manual Handling Risk Assessments will be reviewed annually, and monitored during the Safety Inspections of Physics & Astronomy.</td>
</tr>
<tr>
<td>Audits, Management Systems & Records</td>
<td>The University Of Southampton Safety & Occupational Health (SOH) Team conducts Management Systems and Specialised internal Audits. The findings will be reviewed to ensure its effectiveness within the Academic Unit and across the Faculty. Annual Reports, P.A.T Testing, Inspection Training & Development records are kept by the Physics &</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure/Guidance</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Astronomy Safety Officer (Mr C E Miles)</td>
</tr>
<tr>
<td>More specialised activities.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Procedure/Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work with radiation and/or lasers,</td>
<td>Guidance available from the Safety & Occupational Health (SOH).</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Laser Safety Officer: Dr. H Ulbricht Ext. 22073</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Radiation Safety Officer: Dr. M Newton Ext. 27548</td>
</tr>
<tr>
<td>Genetic modification</td>
<td>Guidance available from the Safety & Occupational Health (SOH).</td>
</tr>
<tr>
<td></td>
<td>Safety Office, 26 University Road, Highfield 02380 593950 or 02380 593951</td>
</tr>
<tr>
<td></td>
<td>http://www.southampton.ac.uk/healthandsafety</td>
</tr>
<tr>
<td></td>
<td>Dr. N Lloyd Ext. 25850</td>
</tr>
<tr>
<td>The issue and use of personal protective equipment</td>
<td>Guidance available from the Safety & Occupational Health (SOH).</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Safety Officer: Mr. C E Miles Ext. 22078</td>
</tr>
<tr>
<td></td>
<td>Some Personal Protective Equipment (PPE) can be obtained from Mr. I Hanney in the Physics Stores, Room 1061 Level 1 of the Physics & Astronomy Building 46.</td>
</tr>
<tr>
<td>Safety in workshops</td>
<td>Guidance available from the Safety & Occupational Health (SOH).</td>
</tr>
<tr>
<td></td>
<td>Workshop Manager: Mr. P Kinsey Ext. 22057</td>
</tr>
<tr>
<td>Noisy operations</td>
<td>Guidance available from the Safety & Occupational Health (SOH).</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Safety Officer: Mr. C E Miles</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Testers: Mr. P Martin Ext.</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure/Guidance</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Testing microbiological safety cabinets</td>
<td>Guidance available from the Safety & Occupational Health (SOH). Mr. R Lockey Ext. 26850</td>
</tr>
<tr>
<td>Handling gas cylinders and regulators</td>
<td>Guidance available from the Safety & Occupational Health (SOH). BOC Gas Safety Course Certified/trained: Mr. T Perkins Ext 23936</td>
</tr>
<tr>
<td></td>
<td>Mr. J Harris Ext. 23936</td>
</tr>
<tr>
<td></td>
<td>Mr. I Hanney Physics & Astronomy Stores Ext. 22043</td>
</tr>
<tr>
<td>Where a risk of potential violence has been identified</td>
<td>Guidance available from the Safety & Occupational Health (SOH) (document available on Safety & Occupational Health (SOH) website)</td>
</tr>
<tr>
<td></td>
<td>http://www.southampton.ac.uk/healthandsafety</td>
</tr>
<tr>
<td></td>
<td>Head of Physics & Astronomy: Prof. P A Charles Ext. 23599</td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy Safety Officer: Mr. C E Miles Ext. 22078</td>
</tr>
<tr>
<td>Student placements and electives</td>
<td>Guidance available from the Safety & Occupational Health (SOH) (document available on SOH website).</td>
</tr>
<tr>
<td>Overseas travel on business</td>
<td>Guidance available from the Safety & Occupational Health (SOH) (document available on SOH website http://www.southampton.ac.uk/healthandsafety</td>
</tr>
<tr>
<td>Lone working & Working outside of normal hours</td>
<td>Guidance available from the Safety & Occupational Health (SOH) (document available on SOH website http://www.southampton.ac.uk/healthandsafety</td>
</tr>
<tr>
<td></td>
<td>Any person entering or remaining in premises, which are controlled by the university, during the night time on any day from 11pm through to 6am on the following day (“The closure period”) must have the prior agreement recorded in writing or by identifiable of the relevant appointed representative of the university.</td>
</tr>
<tr>
<td>Activity</td>
<td>Procedure/Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| | Colin Miles, the Physics & Astronomy Safety Officer, is the nominated representative for Physics & Astronomy, who will scrutinise & authorise requests for permission to work out of hours in Physics & Astronomy. All such requests must be made to the Physics & Astronomy Safety Officer on the appropriate form and accompanied by an approved Risk Assessment. “Out of Hours” forms can be found at: http://www.southampton.ac.uk/estates/services/outofhoursworking/ (Form A is used to verify that a risk assessment has been undertaken and the appropriate measures are in place. Permission can then be given for a single visit or for a period of up to 3 months. The individual requesting entry will need to notify the Central Control Room using Form B on EACH occasion that entry is needed. Completed forms should be emailed as an attachment to the Central Control Room unisecurity@soton.ac.uk) Working alone in the evenings and at weekends can be dangerous in a number of circumstances, (e.g. writing documents at your office desk) the situation constitutes a negligible risk and work alone constitutes an acceptable practise. However there are other circumstances, such as the use of machinery, high voltage equipment, chemicals & materials, in which dangerous to be alone with, and you should make sure that someone is nearby, and in contact so they can assist in the event of an accident. When there is a mixture of laboratory and office work, staff are expected to carry out the laboratory work during normal hours. Supervisors are expected to encourage their staff to plan their work in this way.
<p>| Risk Assessment forms must be completed, and carried out to devise safe working arrangement for all lone workers along with the “Out of Hours” form, and signed by the Physics & Astronomy Safety Officer (Mr. C E Miles Ext. 22078). |</p>
<table>
<thead>
<tr>
<th>Activity</th>
<th>Procedure/Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is essential to note there are no first aiders in Physics & Astronomy, outside of working hours.</td>
<td></td>
</tr>
</tbody>
</table>
| **Working with Solvents (Acetone, Methanol, Ethanol & Isobutyl)** | The use of small quantities, less than 250ml of solvent, does not need to be Risk Assessed, providing the following precautions are observed;
- Small quantities
- No naked flames
- Well-ventilated area
- Contact with skin avoided as far as possible
The use of solvents, at a volume greater than 250ml must be fully Risk Assessed and when not in use, stored in a fire rated metal cabinet. |
| **Cryogenic Liquids** | Prior to using Liquid Helium or Liquid Nitrogen, contact Mr C E Miles Ext. 22078, Mr. T Perkins Ext. 23936 or Mr J Harris Ext. 23936
When using Liquid Helium or Liquid Nitrogen, there is a danger of asphyxiation in confined spaces, and of explosion with inadequately ventilated cryogenic vessels.
Cryogenic liquids must not be accompanied whilst transporting in lifts, or in poorly ventilated spaces.
Only vessels designed for cryogenics use should be used.
Liquid Nitrogen & Helium will condense atmospheric oxygen.
Combustible materials should be kept away from cryogenic liquids
Gloves and goggles must be worn when working with or transporting vessels of cryogenic materials.
Naked skin will freeze and stick to cryogenic vessels and associated pipe work. |
Generic Manual Handling Risk Assessment

<table>
<thead>
<tr>
<th>Title of project or activity</th>
<th>General Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Person</td>
<td>Physics & Astronomy Safety Officer: Colin Miles Ext. 22078</td>
</tr>
<tr>
<td>Academic Unit</td>
<td>Physics & Astronomy</td>
</tr>
<tr>
<td>Date of assessment</td>
<td>4/09/2013</td>
</tr>
<tr>
<td>Location of work</td>
<td>Generic Manual Handling Risk Assessment for Physics & Astronomy, Building 46</td>
</tr>
</tbody>
</table>

Introduction

The following risk assessment and guidance has been developed to assess the hazardous manual handling activities, risks and identify appropriate prevention and control measures to reduce them. A simple implementation check is provided to assist Academic Units in demonstrating that the control measures are being implemented, please identify when they have been implemented.

Activities with Hazardous Potential and Significant Risks

These are contained within the shaded area. The first shaded area in the assessment identifies the hazard or hazardous activity and the second identifies the risks imposed by that activity.

Preventative and Protective Measures to Avoid or Reduce Risks to an Acceptable Level

These are contained within the un-shaded areas. This section identifies the control measures required and may require Academic Units to choose options or carry out additional risk assessments. Any other Manual Handling operation outside these general ones is subject to a specific separate Manual Handling assessment.

Help and Support

Academic Units must visit the Safety & Occupational Health website. The website contains a wide range of guidance to assist Academic Units to manage health and safety effectively including University Safety Policies and Supplements, Safety Guidance, Training, Forms, etc.

Hazard 1: Moving of Furniture, including Tables, Chairs, and High Stools

<table>
<thead>
<tr>
<th>Risks</th>
<th>Implemented</th>
<th>Date Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks of musculoskeletal disorders, fractures, contusions and other related abrasions. Risk to employees, students and others as a result of poor handling techniques</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>• Awkward posture when lifting, carrying and lowering, due to shape and weight distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Stooping when lifting or lowering furniture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Twisting when carrying short distances in confined space (due to arrangement of tables rather than room size)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Can be repetitive task depending on the number of objects to be moved and frequency undertaken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>• Rooms should be left in the state in which they were found.</td>
<td></td>
</tr>
</tbody>
</table>
Measures
- Users of teaching areas or laboratories should only re-arrange rooms if and when necessary.
- Manual handling training should be provided to all individuals who carry out frequent handling activities.
- Tables should not be dragged and should be lifted from one position to another. Employees should remove, where ever possible, stooping, twisting, over reaching and bending when moving furniture.
- Where possible furniture should be stored as close as possible to their point of use.
- All furniture taken from one floor to another should use the lifts which are available and not the stairs.
- Employees should not lift, carry or move any object which is beyond their capabilities and should ask for assistance in these occurrences.
- Porter services are available for manual handling tasks and should be used when significant handling activities are to be carried out.

Tables
- Some tables are likely to be too difficult and awkward for single person to relocate. Team lifting should be carried out for heavy or unwieldy tables.

High Stools
- High stools are unwieldy and should be moved one by one.

Chairs
- Stack height of chairs should be solid and secure. They must not exceed shoulder height.
- Restrict the numbers of chairs carried by individuals. Depending on the weight of the chairs and individual capabilities of the employees, chairs should be restricted to 2 - 4 at any time. If numbers of chairs need to be moved frequently and on the same day a specialized adapted chairs trolley should be obtained and used.

Hazard 2: Mail and Postbags

<table>
<thead>
<tr>
<th>Risks</th>
<th>Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Carrying mail and/or post bags repetitively and over distances</td>
<td>- Where possible have deliveries of mail dropped off at the point of use.</td>
</tr>
<tr>
<td>- Unwieldy and unstable when stacked. Stacked materials potentially at risk from falling.</td>
<td>- Use appropriate postbags and carrying devices.</td>
</tr>
<tr>
<td>- Risks of musculoskeletal disorders, fractures, contusions and other related abrasions. Risk to employees, students and others as a result of poor handling techniques.</td>
<td>- Use a trolley with a raised wheel base or dropped down sides even for small amounts of post</td>
</tr>
<tr>
<td></td>
<td>- Use lifts when transporting between floors</td>
</tr>
<tr>
<td></td>
<td>- Use good base lifting techniques</td>
</tr>
</tbody>
</table>

Hazard 3: Boxes and Deliveries

<table>
<thead>
<tr>
<th>Risks</th>
<th>Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Stooping and or jerky movements when lifting or putting down boxes</td>
<td>- Where possible have deliveries of mail dropped off at the point of use.</td>
</tr>
<tr>
<td>- Awkward posture when carrying boxes</td>
<td>- Use appropriate postbags and carrying devices.</td>
</tr>
<tr>
<td>- Having to re-distribute parcels/boxes after main delivery</td>
<td>- Use a trolley with a raised wheel base or dropped down sides even for small amounts of post</td>
</tr>
<tr>
<td>- Contents too heavy to lift/ move easily or for packaging</td>
<td>- Use lifts when transporting between floors</td>
</tr>
<tr>
<td></td>
<td>- Use good base lifting techniques</td>
</tr>
<tr>
<td>Control Measures</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>• Unwieldy or uneven weight distribution depending on what the box contains</td>
<td></td>
</tr>
<tr>
<td>• Where possible have deliveries of mail dropped off at the point of use.</td>
<td></td>
</tr>
<tr>
<td>• Where boxes and deliveries are heavy contact should be made with the supplier to reduce the weight to an acceptable limit, e.g. 10-15Kg.</td>
<td></td>
</tr>
<tr>
<td>• Employees should be trained in manual handling techniques and use these when lifting boxes or other deliveries. Employees must test the weight of boxes prior to moving them. Reading delivery slip will provide a good indication of what is in the box, weights of the load and its weight distribution.</td>
<td></td>
</tr>
<tr>
<td>• Good base techniques should be employed and employees should consider the distances to be travelled. Trolleys should be used where possible. Where distances travelled are in excess of 10m and a trolley is not available, employees should consider resting. Where this is used items should be rested on levels above floor height and as near to waist level as possible.</td>
<td></td>
</tr>
<tr>
<td>• Cardboard boxes should be in good condition and employees should inspect them prior to lifting or moving. Where boxes are found to be in poor conditions or defect the employee should not move the box. Employees should consider removing the contents and placing them into a suitable alternative.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard 4</th>
<th>Moving and/or Setting Out of Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
<td>Risks of musculoskeletal disorders, fractures, contusions and other related abrasions. Risk to employees, students and others as a result of poor handling techniques.</td>
</tr>
<tr>
<td></td>
<td>• Carrying long distances to point of use and storage.</td>
</tr>
<tr>
<td></td>
<td>• Restricted space on retrieval or placement causing twisting to occur.</td>
</tr>
<tr>
<td></td>
<td>• Stored inappropriately i.e. above shoulder height or below knee height on floor.</td>
</tr>
<tr>
<td></td>
<td>• Stooping when lifting and lowering equipment.</td>
</tr>
<tr>
<td></td>
<td>• Awkward, heavy equipment which can difficult to grasp securely.</td>
</tr>
<tr>
<td></td>
<td>• Repetitive movements in setting out equipment.</td>
</tr>
<tr>
<td>Control Measures</td>
<td></td>
</tr>
<tr>
<td>• Employees required to move equipment should be trained in manual handling techniques and should use these whenever moving, setting out or storing equipment.</td>
<td></td>
</tr>
<tr>
<td>• Use lifts when transporting equipment between floors.</td>
<td></td>
</tr>
<tr>
<td>• Where possible, equipment should be stored as near to point of use as possible and at appropriate height according to weight of equipment and frequency of its use.</td>
<td></td>
</tr>
<tr>
<td>• Good base techniques should be employed when moving equipment.</td>
<td></td>
</tr>
<tr>
<td>• Employees should consider the distances to be travelled. Appropriate trolleys should be used where possible i.e. platform/sack barrows, 2/3 tier trolleys and cages etc. Where distances travelled are in excess of 10m and a trolley is not available, employees should consider resting. Where this is used items should be rested on levels above floor height and as near to waist level as possible.</td>
<td></td>
</tr>
<tr>
<td>• Breaks or change in activity should be deployed if setting out a significant quantity of equipment regardless of individual weight.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard 5</th>
<th>Transporting of Files and Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
<td>Risks of musculoskeletal disorders, contusions and other related abrasions. Risk to employees, students and others as a result of poor handling techniques.</td>
</tr>
<tr>
<td></td>
<td>• Individual weight of objects disguises the combined weight – deceptively heavy.</td>
</tr>
</tbody>
</table>
- Files/papers are unstable when stacked. Stacked materials potentially at risk from falling.

Control Measures
- Use a trolley with a raised wheel base or drop down sides even for the smaller quantities of files and papers
- Use lifts when transporting between floors

<table>
<thead>
<tr>
<th>Hazard 6</th>
<th>Manual Lifting from a Sitting Position</th>
</tr>
</thead>
</table>
| **Risks** | Risks of musculoskeletal disorders. Risk to employees, students and others as a result of poor handling techniques.
- Poor posture, leading to back ache and restricted blood flow to legs.
- Repetitive actions and strain injury
- Bending, stooping and twisting.
- Desk and chair set at incorrect height for task at hand. |
| **Control Measures** | Every employee should be shown correct sitting posture and desk arrangement
- DSE assessment should be carried out for those who sit in front of DSE regularly and this should ensure good housekeeping
- Reduce the amounts and repetitive actions of lifting and handling as far as possible. Store items which require movement below shoulder height, above knee height and in appropriate locations for access.
- The guideline figures are 3Kg for females and 5Kg for males, however, this will depend on the individual's capabilities and health. |

<table>
<thead>
<tr>
<th>Hazard 7</th>
<th>Manual Handling by those who are Pregnant or who have Health Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
<td>Risk of aggravating a pre-existing health concern / condition. Risk to employees, students and others.</td>
</tr>
</tbody>
</table>
| **Control Measures** | Specific risk assessments must be developed for those employees who are pregnant, are new mothers or have a health issues which could be affected by carrying out manual handling activities.
- Individuals with health problems, e.g. back problems or other muscular disorder, should be referred to, assessed and monitored by Occupational Health. Referrals should be made prior to employees carrying out handling activities.
- Where the manual handling activity involves the supporting, lifting / lowering, pushing / pulling awkward, bulky or heavy objects employees who are pregnant or have health conditions my need to be excused from the activities. |

<table>
<thead>
<tr>
<th>Hazard 8</th>
<th>Manual Handling and the Storage of Materials</th>
</tr>
</thead>
</table>
| **Risks** | Risks of musculoskeletal disorders, fractures, contusions and other related abrasions. Risk to employees, students and others as a result of poor handling techniques
- Awkward posture when lifting, carrying and lowering, due to shape and weight distribution
- Stooping when lifting or lowering furniture
- Twisting when carrying short distances in confined space |
| **Control Measures** | Sufficient secure shelving should be provided to minimise the need for items to be stored below knee height or on the floor. Alternatively minimise the quantities of items stored on the floor sufficiently to ensure that the floor is kept free from clutter and potential tripping hazards. |
Where items are stored at a position which requires access equipment, only suitable and appropriate stepladders should be used. These should be class 1 or class 2 ladders and not those designated for domestic use.

- Clear unobstructed walkways and access must be maintained at all times, to enable the unhindered use of trolleys to point of delivery/collection in storage cupboards, and to enable good manual handling techniques to be exercised to avoid the need for overstretching, overreaching or bending over obstructions to obtain an item.
- Small obstructions should be moved to one side when access is required to enable the object/item to be easily retrieved.

Emergency Procedures

<table>
<thead>
<tr>
<th>Implemented</th>
<th>Date</th>
<th>Sign</th>
</tr>
</thead>
</table>

Risks

- In adequate supply of first aiders or first aid supplies. Risk to employees, students and others.

Control Measures

- First aid cover is available and in place at all times

Nominated First Aiders:

- Mr D Grimsey
 Tele: 22040
 Room No. 1005
- Mr M Scully
 Tele: 23932
 Room No. 1001
- Mr M Ashley
 Tele: 22065
 Room No. 3087
- Mrs S Barkovic
 Tele: 22065
 Room No. 3087

Physics & Astronomy Safety Officer:

- Mr C Miles
 Tele: 22078
 Room No. 1019

Hazards

Additional Control Measures Required (List and Implement)

<table>
<thead>
<tr>
<th>Implemented</th>
<th>Date</th>
<th>N/A</th>
</tr>
</thead>
</table>

Control Measures

-

Assessor

Name
Signature
Date

Responsible Person / Manager

Name
Signature
Date
GENERIC RISK ASSESSMENT

RISK ASSESSMENT No: Compressed Gas Cylinders

<table>
<thead>
<tr>
<th>Brief outline of Work/activity:</th>
<th>Transportation, Storage & Use of Compressed Gas Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Building 46 School of Physics & Astronomy</td>
</tr>
</tbody>
</table>

Significant Hazards:

Pressurised gas cylinders are heavy, weighing up to 80 kilos, and are unstable objects. They can cause considerable damage to those handling them. They contain gas which can be Toxic, Asphyxiating, or Flammable and at high pressure.

For an untrained person, the most probable source of injury is from incorrect fitting of the pressure regulator allowing the escape of gas (likely) or from a falling cylinder (unlikely). Resulting injuries may be moderate to severe.

Who might be exposed to the hazard:

A falling cylinder or exposure to high pressure gas is likely to injure only the user of the cylinder, however if equipment is blown apart by excessive pressure or toxic, or asphyxiating gases escape the damage may be widespread within a laboratory or beyond.

Existing control measures:

No one is to attempt to use, or move a compressed cylinder unless trained by a competent member of the Technical Staff.

It is important that users only of appropriate physique attempt to collect or to move these objects.

Cylinder trolleys are supplied for transport. Always push trolleys, NEVER PULL! Secure racks for storing, with safety chain. Gas line installation may be undertaken only by trained member of technical staff: lines to be leak tested before commissioning and inspected/tested at suitable intervals thereafter.

Cylinders are to be kept in suitable racks or stations outside laboratories but where this is not possible they may be kept in suitable, secure racks, with Safety chains within laboratories or, in exceptional circumstances, secured in cylinder trolleys. CYLINDERS MUST NEVER BE LEFT FREESTANDING. The number of gas cylinders at any site must be kept to a minimum. Flammable/fuel gases such as Hydrogen or Methane must never be stored in the same rack/site as Oxygen and therefore they are stored with separation of 3 metres in an outside storage cage, away from other flammable/fuel gases.

Safety glasses or face shield should be worn when locating or removing the pressure regulator and when opening the spindle valve. Suitable closed-toe shoes to prevent crushing when moving cylinders.

Operating Precautions

The cylinder should be checked to ensure that it contains the expected gas by examining the label and (less reliable) the colour code.

The cylinder must be transported on an approved trolley by pushing and not by pulling. If the trolley shows signs of wear or damage, it must be taken to the Mechanical Workshop where it may be repaired or replaced.

The cylinder must be secured firmly in an approved location. CYLINDERS MUST NEVER BE LEFT FREESTANDING.

(continued on next page.....)
The Pressure Regulator should be checked. Is it designed for the gas to be controlled? The pressure rating: is it capable of coping with the pressure in the cylinder? Is it damaged? Damaged regulators should be reported to a member of Technical Staff and replaced.

Correctly fitting tools/spanners should be used when fitting regulators to avoid damage to the screw fittings.

Oil or grease must never be used, especially on an Oxygen cylinder: - the oil or grease may ignite or explode - and PTFE tape or jointing compound should never be used to attempt to seal leaks. N.B. Flammable gas cylinders have a left hand thread.

Snoop or a Soapy water solution may be used to check for leaks around the regulator.

The regulator should be turned to zero before opening the valve at the spindle - slowly and never by more than one turn - and when not in use, the valve closed at the spindle.

Are risks adequately controlled: YES ☒ / NO ☐

<table>
<thead>
<tr>
<th>If NO, list additional controls and actions required:</th>
<th>Additional Controls:</th>
<th>Action by:</th>
</tr>
</thead>
</table>

Completed by:

<table>
<thead>
<tr>
<th>Names</th>
<th>Signatur</th>
<th>Date</th>
</tr>
</thead>
</table>

Supervisor:

<table>
<thead>
<tr>
<th>Name</th>
<th>Signatur</th>
<th>Date</th>
</tr>
</thead>
</table>

Date of Reviews:

| | | | |
General Health & Safety Risk Assessment Template

<table>
<thead>
<tr>
<th>Work activity / task</th>
<th>General office work</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Assessor(s)</th>
<th>Andrew White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Manager</td>
<td>Malcolm Ace</td>
</tr>
<tr>
<td>Date</td>
<td>24/06/13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty / Service</th>
<th>Safety & Occupational Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Unit / Team</td>
<td>n/a</td>
</tr>
<tr>
<td>Location</td>
<td>cross-Campus</td>
</tr>
</tbody>
</table>

Brief description of activity / task

Basic normal office work activities.

Additional notes

This is a generic risk assessment.

Lone working could exacerbate several of the hazard consequences. Therefore, University and any local rules on lone work must be applied, and some activities should not be undertaken alone, including lifting / moving large or heavy items, or lots of items, or reaching up using a step-ladder.

In the event of injury or illness, trained first-aiders are available across all campuses and all main buildings during working hours (ask your Faculty / Service Health & Safety Officer for a list), and out-of-hours, Security provide first aid coverage. Security can be reached on 3311 (02380 593311).

Any individual medical issues that could exacerbate risk should be referred to Occupational Health (71-4156 / 02380 794156, HR or SOH websites).

Offices are subject to an annual Health & Safety inspection by Faculty / Service Health & Safety Officers and relevant managers. Corrective actions identified during inspections must be implemented.

Declaration by responsible manager: I confirm that this is a suitable & sufficient risk assessment for the above work activity / task.

<table>
<thead>
<tr>
<th>Signed</th>
<th>Andrew White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print name</td>
<td>Andrew White</td>
</tr>
<tr>
<td>Date</td>
<td>25/06/13</td>
</tr>
</tbody>
</table>
Declaration by users: I confirm that I have read this risk assessment, will implement the controls outlined herein, and will report to the responsible manager any incidents that occur or any shortcomings I find in this assessment.

<table>
<thead>
<tr>
<th>Signed</th>
<th>Print name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed</td>
<td>Print name</td>
<td>Date</td>
</tr>
</tbody>
</table>

Version 1.1, 05 June 2013
Health & safety risk assessment: A basic guide

(1) Identify all hazards, hazard events, and reasonably foreseeable worst case consequences.
A ‘hazard’ is something with the potential to cause harm (ie, injury or ill-health). A ‘hazard event’ is the incident where the harm from the hazard occurs. A ‘hazard consequence’ is the nature and extent of the harm caused.

‘Reasonably foreseeable worst case consequence’: ‘Worst case’ means it is not necessarily the most likely consequence that should be considered, but, ‘reasonably foreseeable worst case’ means that far-fetched, improbable hazards and consequences need not be considered.

(2) Estimate inherent risk for each hazard. ‘Inherent’ risk is that without any controls applied.

Risk: Is likelihood of the hazard event and the reasonably foreseeable worst case consequence combined.
In estimating risk, also consider factors that could exacerbate risk, such as reasonably foreseeable emergencies, inexperience, lone work, new & expectant mothers, waste disposal, potential effects on others such as contractors or visitors, etc. A separate ‘row’ for a particular hazard / event / consequence may be needed to account for these.
Estimate risk using the matrix on the next page, and place an X in the appropriate box.
‘High’ risks must be reduced before activity / task can commence or continue.
‘Medium’ risks must be reduced as much and as soon as is reasonably practicable.

(3) Devise controls for each hazard. A ‘control’ is a measure taken to reduce risk.

Controls: As a general principle, the ‘hierarchy’ of control that is to be applied (from most to least preferable) is: avoid the risk; substitute something less hazardous that gives same or similar outcomes; ‘engineering controls’ (ie, equipment and articles that mitigate or contain a hazard); ‘safe system of work’ (ie, a prescribed work method); and ‘personal protective equipment’ (‘PPE’, eg, gloves, safety glasses, respirator, boots, etc). So, PPE is a last resort.
Other controls that should be considered: training, supervision, planning for reasonably foreseeable emergencies, health surveillance, validation and maintenance of any engineering controls, and correct specification of any PPE.
‘Low’ risks, by definition, do not require controls.

(4) Estimate residual risk for each hazard. ‘Residual’ risk is that with controls applied.

Residual risk is estimated as above, and the objective is for all risks to be low so far as is reasonably practicable.

(5) The responsible manager, supervisor, research leader, principal investigator or project leader must sign the Declaration on the front page.

- Health & safety risk assessments must be ‘suitable and sufficient’, ie, cover all relevant issues and include enough detail.
- It is activities / tasks that should be risk assessed, and not, as such, substances (but rather use of substances), or equipment (but rather use of equipment), or locations (but rather activities therein), or people (but rather what they do).
- This template is for ‘general’ health & safety risk assessment, suitable for most hazards, but certain hazards do require additional regulatory and technical detail (eg, ionising radiations, biological agents, genetic modification, noise, hazardous chemicals, etc).
- Health & safety risk assessments can be generic, provided they remain ‘suitable and sufficient’.
- Health & safety risk assessments need to be reviewed periodically (at least every two years or sooner if inherent risk is high), and also after incidents, after significant changes to the activity / task, if staff raise any concerns, if there is a relevant change to the law or to other relevant standards, or if there is anything to suggest the assessment is not suitable or sufficient.
- You may remove pages 3 and 4 from the final assessment.
Health & safety risk estimation matrix

High risk – requires controls to reduce risk before activity / task can commence (or continue).

Medium risk – requires controls to reduce risk as much and as soon as is reasonably practicable.

Low risk – all risk should be reduced to this tolerable level, so far as is reasonably practicable.

<table>
<thead>
<tr>
<th>Reasonably foreseeable worst case consequence</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
<th>Critical</th>
<th>Catastrophic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely</td>
<td>medium risk</td>
<td>high risk</td>
<td>high risk</td>
<td>high risk</td>
<td>high risk</td>
</tr>
<tr>
<td>Likely</td>
<td>low risk</td>
<td>medium risk</td>
<td>high risk</td>
<td>high risk</td>
<td>high risk</td>
</tr>
<tr>
<td>Unlikely</td>
<td>low risk</td>
<td>low risk</td>
<td>medium risk</td>
<td>high risk</td>
<td>high risk</td>
</tr>
<tr>
<td>Rare</td>
<td>low risk</td>
<td>low risk</td>
<td>low risk</td>
<td>medium risk</td>
<td>high risk</td>
</tr>
<tr>
<td>Almost never</td>
<td>low risk</td>
<td>low risk</td>
<td>low risk</td>
<td>low risk</td>
<td>medium risk</td>
</tr>
</tbody>
</table>

1 'Significant injury' could include, for example, laceration, burn, concussion, serious sprain, minor fracture, etc.
 'Significant illness' could include, for example, dermatitis, minor work-related musculoskeletal conditions, partial hearing loss, etc.

2 'Serious injury' could include fracture or dislocation (other than digits), amputation, loss of sight, penetration or burn to eye, electric shock, asphyxia, or any injury leading to unconsciousness or requiring resuscitation or admittance to hospital for more than twenty-four hours. 'Serious illness' could include, for example, requiring medical treatment after chemical, biological or radiological exposure, severe debilitating musculoskeletal conditions, severe dermatitis, asthma, etc.

3 For likelihoods in between the listed values, use the higher likelihood to estimate risk. These probability definitions are only a guide.
<table>
<thead>
<tr>
<th>Hazards, hazard events, and reasonably foreseeable worst case consequences</th>
<th>Inherent risk (no controls) from matrix (mark with X)</th>
<th>Controls (measures to reduce risk)</th>
<th>Residual risk (with controls) from matrix (mark with X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal / DSE; Incorrect working posture and/or incorrect workstation setup and/or poor work habits / pattern; Debilitating and painful musculoskeletal injury such as tendonitis in the wrists, tennis elbow, carpal tunnel syndrome, chronic shoulder, neck or back pain.</td>
<td>High X</td>
<td>Successful completion of the online DSE training and assessment package (ca 25 min) (contact your Faculty/Service Health & Safety Officer for details), any issues identified to be resolved by local Faculty/Service DSE assessors and any significant musculoskeletal problems to be referred to Occupational Health. Correct working posture and workstation setup (as per the online package) to be adopted, and regular breaks to be taken (at least 5 mins every hour). Avoid clutter on, under and around work desks – apply ‘good housekeeping’.</td>
<td>High</td>
</tr>
<tr>
<td>Musculoskeletal / manual handling; Incorrect lifting/moving technique and/or excessive repetitive lifting/moving; Debilitating and painful musculoskeletal injury, particularly to the back.</td>
<td>High</td>
<td>Avoid lifting/moving heavy or large items. Engage a competent contractor with the necessary equipment if several such items need moving, such as furniture during an office rearrangement. If a heavy or large item needs to be moved, use a number of people to move it, and ensure they are aware not to exceed their individual capacity. Split items into lighter smaller loads if possible. Use containers with good hand grips. Use a trolley, but ensure it is well maintained and its wheels run smoothly. Beware of slopes and uneven surfaces. If moving many items, ensure breaks planned and taken. Use good lifting technique. Adopt a stable position, get a good hold, do not stoop or squat, do not flex back while lifting, do not twist or lean sideways, keep head up, and move smoothly. Keep load close to waist. Adjust load after putting it down. Do not lift more than can be easily managed. If staff are required to undertake frequent manual handling, then lifting and moving awareness training should be provided (enquire with Safety & Occupational Health).</td>
<td>High</td>
</tr>
<tr>
<td>Falls (on same level); Sliding on a slippery floor surface or tripping over an obstruction or damaged flooring; Significant injury such as a broken wrist, twisted knee, wrenched back etc.</td>
<td>High</td>
<td>Immediately clean up any spilt drinks etc, even small spills, and ask colleagues to do likewise. Ensure papers, files, boxes, etc are not left on the floor, and that trailing cables are eliminated or made secure. Report damaged flooring to Estates & Facilities for urgent repair. Mark problem area clearly. Flooring that becomes slippery when it rains or snows etc should either be treated with a non-slip coating (enquire via Estates & Facilities) or non-slip absorbent mats used. Ensure areas are well lit, and lighting is functional.</td>
<td>High</td>
</tr>
<tr>
<td>Hazards, hazard events, and reasonably foreseeable worst case consequences</td>
<td>Inherent risk (no controls) from matrix (mark with X)</td>
<td>Controls (measures to reduce risk)</td>
<td>Residual risk (with controls) from matrix (mark with X)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Falling objects; Files, books, boxes, etc falling from shelves, shelves detaching from walls, filing cabinets falling over, etc; Minor injury such as cuts, contusions, etc.</td>
<td>High</td>
<td>Do not overload shelves. Get loose or doubtful shelving repaired.</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>No heavy or large items to be stored above shoulder height.</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Filing cabinets must have a functioning mechanism to prevent more than one drawer being opened at a time. Do not leave drawers open. Fill filing cabinets from the bottom drawer upwards.</td>
<td>Low</td>
</tr>
<tr>
<td>Electrical; Electrocution, outbreak of fire; Shock, burns, death.</td>
<td>High</td>
<td>Use only CE-marked double-insulated fuse-protected standard office equipment. No mains-powered appliances from home allowed.</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Do not use damaged or suspect equipment, including defects of plugs and leads. Immediately report any damaged or suspect electrical fittings to Estates & Facilities. Have any equipment that blows its fuse, or appears to overheat, or produces unusual odour, checked before further use, especially laptop batteries.</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Do not cover the vents or fans of equipment. Avoid excessive build-up of dust on equipment. Minimise use of multi-socket adapters. Do not overload such adapters. Such items must be fused and tested (as below). All electrical equipment must have a ‘portable appliance test’ (PAT) by a competent technician or contractor at least every three years. Untested items not to be used.</td>
<td>Low</td>
</tr>
<tr>
<td>Work at height; Fall from a height (less than 1 m in an office environment); Significant injury such as a broken limb, wrenched back, severe contusion, etc.</td>
<td>High</td>
<td>Do not stand on chairs, desks, tables, etc.</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>If you need to reach up, obtain a suitable kick stool or step-ladder. Step-ladders must have regular recorded safety checks. Sensible footwear is needed for such tasks.</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Hazards, hazard events, and reasonably foreseeable worst case consequences</td>
<td>Inherent risk (no controls) from matrix (mark with X)</td>
<td>Controls (measures to reduce risk)</td>
<td>Residual risk (with controls) from matrix (mark with X)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hazardous chemicals; Exposure to solvent fumes from glues, cleaning agents, etc; Nausea, headaches, asthma, etc.</td>
<td>High</td>
<td>Avoid use of spray and heated glues and cleaners.</td>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
<td>Avoid high VOC (volatile organic compound) glues and cleaners. Use water based / low VOC / low odour glues and cleaners. Work with such products in a well-ventilated area. Any significant non-routine work involving chemicals requires a chemical risk assessment (COSHH) (contact your Faculty/Service Health & Safety Officer).</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Moving parts of equipment such as guillotines, shredders, fans, etc; Contact with moving parts; Minor injury such as cuts, contusions, etc.</td>
<td>High</td>
<td>Guarding and/or interlocks as fitted to devices to be used. Guards and interlocks must not be overridden, and must be in place and working. Young or inexperienced workers may need initial training and supervision.</td>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Fire; Outbreak of fire; Serious injury, death.</td>
<td>High</td>
<td>All exit routes (normal and emergency) must be kept clear at all times, and not used for storage. Smoke detectors, alarm call points, fire extinguishers, etc must not be obstructed or interfered with. Such items are routinely maintained and tested by Estates & Facilities. Fire doors must be kept closed, or in the case of fire doors that automatically close when the alarm sounds, not obstructed. Minimise storage of combustible materials overall. Avoid use of portable heaters, if at all possible. If such heaters must be used, they must not be left running unattended, must be switched off and unplugged when office is not occupied, must be kept away from combustible materials, and must not be covered. Evacuate as soon as alarm sounds. Cooperate with fire marshals and fire drills.</td>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
Best Laboratory Practice

Type: Guidance – Best Laboratory Practice – HS/UOS/GU/060/01

Issued By: Central Health & Safety Group

Date: 21st March 2012

Purpose

Best Laboratory Practice is an ethos that defines the work practices and culture of the UoS laboratories. Best laboratory practice arrangements must be adopted by all UoS staff, students and visiting workers in UoS managed laboratory areas. It is intended that the practices embodied in this guidance become a framework within which Faculties can produce a safety policy or local code of practice for laboratory safety.

Reference

- Elements 1, 2, 4 and 6 of the Health and Safety Management System.

Best Laboratory Practice for all UoS laboratories

The following Health and Safety guidelines should be adopted (where appropriate) when working in any UoS laboratory regardless of Faculty or scientific discipline to ensure common hazards are controlled and managed.

Responsibilities

Individual responsibilities

Each individual in the laboratory is responsible for their own safety and for the safety of others affected by their work. This includes responsibility for:

- risk assessing, planning and carrying out the activities/experiments.
- safe storage and labelling of samples and chemicals.
- following emergency procedures.
- the safe disposal of all substances involved.

Management responsibilities

Staff/project/laboratory managers are responsible for:

- Ensuring risk assessments are completed and are suitable and sufficient.
- Ensuring equipment is serviced/calibrated and records are kept.
- Training of staff in safety procedures and safe working practices.
Ensuring control measures identified in risk assessments are in place and use of these controls are enforced.

Personal Care

- External outdoor clothing, such as jackets and coats, as well as bags must not be carried into or stored within the laboratory area. This will avoid the possibility of contaminating outdoor clothing with chemicals, radioisotopes or any biological agents which might subsequently be carried out of the laboratory environment.

- Suitable footwear must be worn at all times in the laboratory area. This is regarded as low heeled, closed toe footwear made of a suitable material e.g. leather. Open-toed sandals are not suitable footwear.

- Cosmetic products must not be applied within the laboratory area.

- Cuts and abrasions must be protected with suitable waterproof plasters before starting work.

- Long hair must be tied back.

- Eating, drinking and chewing and the preparation of food or drinks are not allowed within the laboratory area.

- Storage, washing and disposal of foodstuffs and cutlery in the laboratory is prohibited.

- Avoid touching exposed areas such as face or hair while wearing gloves or while working with chemicals and other substances.

Personal Protective Equipment (PPE)

Where Personal Protective Equipment is identified as a control in part of a risk assessment it is for personal use only. In any situation where PPE is in direct contact with the skin of the individual (e.g. safety glasses, gloves, ear protectors) or could be potentially exposed to airborne contaminating materials (e.g. lab coats), it must not be shared. Where PPE is shared, for example thermal gloves, UV face shields and face visors; it must be well maintained and cleaned or washed regularly. All PPE must be assessed for suitability and compatibility and the users must be trained in its use, storage and maintenance.

- Suitable laboratory coats must be worn when working in the laboratory. Laboratory coats are provided for your protection. Laboratory coats should be removed immediately if they become contaminated with any hazardous substance and the local decontamination/cleanup procedures followed. Laboratory coats must not be worn or carried outside the laboratory suite/areas.

- Laboratory coats must be laundered at regular intervals internally or by a suitable laundry company.

- Laboratory coats which are appropriate to the activities/type of lab must be provided for all visitors.

- Suitable eye protection is provided and must be worn when working in the laboratory. The only exception to this is when a task will be impaired by using eye protection and an assessment of the risks demonstrates that it is safe not to use the eye protection during that particular task. Consideration must be given to work of other staff in adjacent areas and this must be reflected in the risk assessment.
Suitable hand protection gloves (non-latex disposable or otherwise) must be worn where the risk assessment determines the need. Gloves however must be removed before using any communal equipment such as computer keyboards, telephones etc, that are regarded as clean. Gloves must also be removed when using door handles. In some circumstances a 'one-glove' policy can operate. It is recognised that for some tasks such as polymerase chain reaction (PCR), wearing gloves may be needed to protect the work from environmental contamination. Hand care is an area often neglected by those working within laboratories. It is particularly important to ensure good hand care if you are wearing protective gloves for any process or activity. Hands should be rinsed and carefully dried after protective gloves are removed. Hands should be washed and dried before leaving the laboratory or work area. Consideration should be given to the supply and use of Good emollient creams at the end of each working day. This will ensure that natural oils that may be lost during work activity are replaced. This will also help to ensure that skin remains an effective barrier to external agents.

If a risk assessment recommends that respiratory protection (RPE) should be worn to prevent or control exposure to airborne hazards, then this must be face-fit tested to the user. Each worker should be provided with their own RPE.

Laboratory Behaviour

- Lone working out of hours is strongly discouraged and must not be undertaken in a laboratory without a risk assessment conducted in conjunction with the line manager. If it is unavoidable, local management arrangements must be agreed with the line manager. Risk assessments should identify when and where this activity is to be carried out and consent should be obtained from Head of Academic Unit or Head of Department.

- The use of personal headphones is prohibited within the laboratory or work area. The effect of using headphones not only limits a person’s hearing capability but also isolates them from the world around them for example they may not hear fire alarms or other audible warnings.

- The use of mobile phones is prohibited within biological containment laboratories and should be strongly discouraged within other laboratory areas.

- Casual visitors and unauthorised personnel must not enter laboratory areas.

Housekeeping

The risk of ill-health, accidents and emergencies can be reduced by ensuring that the working environment is kept clean and tidy.

- Spills should be cleaned up immediately. Follow the spillage procedures specific to your laboratory and/or those identified in the risk assessment.

- Cardboard boxes and packaging must be broken down and removed as quickly as possible.

- Disposables should not be allowed to accumulate in the laboratory.

- Take care to ensure that electrical leads do not pose a trip hazard and are protected from damage.

- Laboratory materials taken from storage areas should be returned as soon as the task is complete.
Best Laboratory Practice

- The minimum quantities of hazardous substances should be out on the bench or in fume hoods, safety cabinets, etc., during experimental procedures.
- Naked flames such as Bunsen Burners must not be left unattended.
- All waste should be assigned to the correct waste containers and non-contaminated waste should be recycled where possible. Do not allow waste to build up, as it could pose a health or fire hazard.
- Glassware and sharps must be minimised where possible and all damaged glassware must be immediately discarded as unsafe. Sharps must only be used according to the control measures identified in a risk assessment of the associated activity, including any emergency arrangements.
- All containers of chemicals and substances must be clearly labelled including, where relevant, the hazard symbol(s) specified in the Material Safety Data Sheet.
- Paperwork in a laboratory should be kept in a separate area to your ‘wet’ work, this will avoid contamination with hazardous agents which may then be transported out of the laboratory.
- Benches should be cleaned and, if necessary, disinfected after each task.

Techniques

- Complex activities including use of equipment must follow a documented procedure that includes reference to risk assessment.
- Movement within the laboratory environment should be purposeful and careful. Avoid running and other rapid movements that could lead to harm to others, spills, loss of material or damage to equipment.
- Mouth pipetting is forbidden in all laboratories at all times.
- Decanting of large volumes should be carried out by using appropriate equipment e.g. funnels etc and concentrated acids/solvents should be decanted in a fume cupboard.
- Always mix reagents slowly, and remember that concentrated acids should be diluted by adding to water, slowly, and never by adding water to concentrated acid.
- If fumes are likely to be evolved, the work must be done in an operating fume cupboard (i.e. the fan is running and there is detectable airflow; remember that the fume cupboard power light does not necessarily indicate that the cupboard is working). Fume cupboards must be inspected and checked by operators before each use.
- All operations which are liable to produce hazardous or obnoxious concentrations of dusts or vapour should be performed in a fume cupboard.
- Flasks and bottles must never be carried by the neck alone but must always be supported from beneath or transported in a carry-box/container.
- Always check the labels of reagent bottles before use and return bottles to their correct places after use. Never return unused material to the bottle.
- Laboratory doors must display approved hazard symbols illustrating the major risk therein and appropriate signage listing the contact detail(s) of the person or persons responsible for managing personnel in the laboratory.
- Prevent skin contact by careful pouring of liquids and manipulation of solids and gases, and by wearing gloves where necessary.
Best Laboratory Practice

Equipment

- All electrical equipment must be switched off at the socket when not in use and stored away safely.
- Check equipment for damage and safe operation before use. Electrical equipment may only be used if it has a valid test sticker on it.
- Do not use equipment unless you have been trained to use it safely. All use of equipment must follow a documented procedure and may require specific risk assessments to accompany the safe use of them.
- All equipment must be serviced and maintained, and some safety critical equipment will require testing, e.g. Fume Cupboards, Microbiological Safety Cabinets, pressure systems and gas cylinder regulators.

Fume cupboards

- Fume cupboards should not be regarded as convenient disposal routes for toxic or flammable waste gases and vapours. Wherever possible recourse should be made to removing noxious effluent as part of the experiment e.g. by scrubbing, chemical absorption, refluxing etc.
- Fume cupboards used for experiments must not contain any unnecessary stored substances or apparatus.
- Fume cupboards do not provide total containment. For work that requires total containment, a glove box, glove bag or similar must be used.
- One of the major factors affecting the level of containment achieved in a fume cupboard is the face velocity across the open sash. This should be at least 0.5 linear m/s, up to 1.0 linear m/s for very toxic materials. Containment testing and/or personal monitoring will be necessary in some instances.
- Care should be exercised when placing equipment in a fume cupboard so as not to interrupt the air flow (e.g. at least 150 mm from sash, on blocks to allow air underneath). Burners upset air currents and should be avoided. Avoid leaning on the front edges of the fume cupboard.
- Work with the sash as low as reasonably practicable.
- The glass in the sash is not designed as a blast screen. If an experiment is particularly dangerous, screens should be used.
- The materials of construction of the fume cupboard should be compatible with the substances handled. Special consideration must be given to fume cupboards in which hydrofluoric or perchloric acids, or gross quantities (in excess of 2.5 litres) of any acid are to be used.
- Fume cupboards are not microbiological safety cabinets and must not be used to prevent exposure to biological agents.
Best Laboratory Practice

Microbiological safety cabinets

- Anyone intending to use a microbiological safety cabinet must be trained in how to use them safely.
- Biological agents infectious via the aerosol route must always be manipulated within a Microbiological Safety Cabinet.
- **Class I** safety cabinets provide personal and environmental protection but as unsterilized room air is drawn over the work surface through the front opening they do not provide product protection. Class I cabinets are suitable for use with hazard group 2 and 3 biological agents and also primary cell lines.
- All equipment used in class I cabinets must be placed as far back as possible and to either side of the central working space to avoid disruption of the airflow.
- **Class II** safety cabinets provide personal and product protection by only allowing sterilized filtered air over the work surface. Class II cabinets are suitable for use with hazard group 2 and 3 biological agents.
- **Class III** safety cabinets provide the highest level of protection and are suitable for hazard group 3 and 4 biological agents. Gas tight sealed doors prevent all access of external air. All air is filtered into the cabinet and all exhaust air is filtered twice. Access to the work surface is via heavy duty rubber gloves through glove ports in the front panel.
- The front and rear intake grills on class II cabinets must not be blocked with paper or equipment. All equipment must be placed as far back on the work surface as possible without blocking the rear grill. Bulky items such as biohazard waste bags should be placed to either side of the working surface as far back as possible.
- Microbiological safety cabinets are not fume cupboards and must not be used to prevent exposure to gas or vapour.
- All cabinets should be turned on at least 5 minutes before starting work and left running for a minimum of five minutes after work to allow the cabinet to purge contaminated air.
- Frequent movement of hands in and out of class I and II cabinets should be avoided by placing all necessary items within the cabinet before starting work.
- Manipulation of material should be delayed by approx 1 minute after placing hands and arms inside class I and II cabinets to allow the cabinet to adjust and to air sweep the surface of hands and arms.

Cryogenics

- When siting dewars of cryogenic liquids, consideration must be given to the risk of asphyxiaion from boil off of the liquid.
- Use protective coverings for floors where liquid nitrogen is decanted to prevent degradation and cracking of flooring materials.
- Suitable footwear should be used when decanting liquid nitrogen (no open toe footwear).
- Gloves suitable for handling cryogenic liquids must be worn when decanting cryogenic liquids.
- Eye protection must be worn when pouring cryogenic liquids.
- Use minimum quantities of cryogenic liquids at the work bench.
- Re-cap dewars and containers to reduce the amount of boil off.
Best Laboratory Practice

- Some poorly ventilated areas may require an oxygen depletion monitor to be installed.
- Liquid Nitrogen usage should follow a documented procedure which has been developed from risk assessment.

Lasers
- When laser sources are used in laboratories, they should be fully enclosed and considered as Class 1.
- Interlocks / covers must not be removed or defeated.
- Free space beams are not permitted in open (non-laser) laboratories.
- Further information can be found in the laser safety standard on the CHSG website.

Gas Cylinders
- Gas cylinders use in labs must be kept to a minimum and ideally cylinders should be of smaller sizes.
- Storage of cylinders must be outside the building in dedicated ventilated cages.
- Regulators are subject to inspection on a regular basis and records of these inspections should be kept.
- The operation of cylinders including moving and handling must be done by trained personnel only and must follow a documented procedure which had been developed from risk assessment.

Emergency arrangements
- All staff must be trained in local emergency procedures such as emergency evacuation and breech of containment before starting work in the laboratory.

Induction Training
- Faculties and Research Units must have in place a safety induction programme for new arrivals.
- Visitors must be accompanied at all times and comply with the management arrangements in the laboratory.

Work related training
- Research Units must ensure that staff, students and visiting workers are trained to such a level that ensures “competency” - defined as having qualifications, experiences and aptitude appropriate to their duties - in the nature of the task that is being undertaken.
- Training records must be maintained, signed by trainee and trainer and filed appropriately.
- Refresher training may be required for certain roles and tasks e.g. work with radiation, work with clinical material, DSE assessors, first-aid trained staff etc.
Accident/Incident Reporting

- All staff and students are responsible for the prompt reporting of incidents, incidents, near misses and work related ill health and for co-operating in any subsequent investigation.
- Form S24 must be filled out and given to your line manager and safety officer as soon as possible after the accident or incident as certain categories of injury must be reported to the Health and Safety Executive (HSE) by the University Central Health and Safety Group within 10 days.
Appendix A

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Revision Date</th>
<th>Revised Paragraphs</th>
<th>Description of Change / Comments</th>
<th>Originator</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td>Initial issue</td>
<td>Richard Lockey</td>
<td>Biological Safety Adviser</td>
</tr>
<tr>
<td>01</td>
<td>21/03/12</td>
<td>All</td>
<td>Good laboratory practice changed to Best laboratory practice</td>
<td>Richard Lockey</td>
<td>Biological Safety Adviser</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical risk assessment (COSHH)

<table>
<thead>
<tr>
<th>Work task / activity</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Assessor</th>
<th>Responsible manager</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty / Service</th>
<th>Academic unit / team</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brief description of process / activity

<table>
<thead>
<tr>
<th>Hazardous chemicals</th>
<th>Name</th>
<th>Workplace exposure limit (WEL, from EH40, 8h & 15min)</th>
<th>Physical form (eg, powder, dust, granular, liquid, solution, gas)</th>
<th>Quantity</th>
<th>Hazards (Xi, C, Xn, T, T+, F, F+, O, E, N)</th>
<th>Carcinogen, mutagen, teratogen or sensitiser?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Workplace exposure limit (WEL, from EH40, 8h & 15min)</td>
<td>Physical form (eg, powder, dust, granular, liquid, solution, gas)</td>
<td>Quantity</td>
<td>Hazards (Xi, C, Xn, T, T+, F, F+, O, E, N)</td>
<td>Carcinogen, mutagen, teratogen or sensitiser?</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Could an explosive atmosphere be produced?

Consider products and by-products. If 'YES' then a dangerous substances & explosive atmospheres risk assessment (DSEAR) is required – contact the Safety and Occupational Health service.

How often are these tasks done?

How long do these tasks take?

Who could be exposed?

<table>
<thead>
<tr>
<th>Staff</th>
<th>PGR</th>
<th>UG or PGT</th>
<th>contractors</th>
<th>visitors</th>
<th>public</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Likely routes of exposure

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>Ingestion</th>
<th>Skin absorption</th>
<th>Eyes</th>
<th>Injection / broken skin</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inherent risk (no controls) from matrix (mark with x)

<table>
<thead>
<tr>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Could the hazardous chemical(s) be eliminated or substituted with less hazardous ones?

<table>
<thead>
<tr>
<th>Physical or engineering controls (eg, total enclosure, fume cupboards, glove box, etc)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative controls (eg, training, supervision, signage, etc)</td>
<td></td>
</tr>
<tr>
<td>Personal protective equipment (eg, respirators, safety specs, gloves, etc)</td>
<td></td>
</tr>
<tr>
<td>Additional controls</td>
<td></td>
</tr>
</tbody>
</table>

Residual risk (with controls) from matrix (mark with x)

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional risks and controls for maintenance activities

<table>
<thead>
<tr>
<th>Methods for correct and safe disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillage</td>
</tr>
<tr>
<td>Uncontrolled release</td>
</tr>
<tr>
<td>Fire</td>
</tr>
<tr>
<td>Failure of local exhaust ventilation (fume cupboard, extract hood, etc)</td>
</tr>
</tbody>
</table>

Declaration by responsible manager: I confirm that this is a suitable & sufficient risk assessment for the above work activity / task.

<table>
<thead>
<tr>
<th>Signed</th>
<th>Print name</th>
<th>Date</th>
</tr>
</thead>
</table>
Declaration by users: I confirm that I have read this risk assessment, will implement the controls outlined herein, and will report to the responsible manager any incidents that occur or any shortcomings I find in this assessment.

<table>
<thead>
<tr>
<th>Signed</th>
<th>Print name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed</td>
<td>Print name</td>
<td>Date</td>
</tr>
</tbody>
</table>

Chemical risk assessment (COSHH) notes

Version 1.00, 13 September 2013
- **Name** – Give the name of the material as supplied.
- **Workplace exposure limit** – The COSHH regulations require users to consider any existing published workplace exposure limits (WEL) for airborne exposure. These are available in the document EH40 ‘Workplace exposure limits’, published by the HSE and free to download on http://www.hse.gov.uk/pubns/books/eh40.htm. Not all materials will be listed on here. The absence of a WEL does not mean the substance is ‘safe’ and has no limits, this just means there is no data available.
- **Quantity** – This may be quoted in any sensible units for your process. Generally, milligrams, grams, kilogrammes, millilitres or litres will be understood by anyone who needs the COSHH information.
- **Hazardous properties** – CHIP symbols indicate the substances are hazardous. The symbols are Xi (irritant), C(corrosive), Xn(harmful), T(toxic), T+(very toxic), Fflammable), F+(extremely flammable), O(oxidiser), N(harmful to the environment) and E(explosive). See table below for symbols.
- **Carcinogens** – Any material with the risk phrases R45/R40 or hazard phrases H350/H351.
- **Mutagen** – Any material with the risk phrases R46/R68 or hazard phrases H340/H341.
- **Teratogen** – Any material with the risk phrases R61/R63 or hazard phrases H360/H361.
- **Reproductive toxic** – Any material with the risk phrases R60/R62 or hazard phrases H360/H361.
- **Sensitiser** – Any material with the risk phrases R42/R43 or hazard phrases H334/H317.
- **Physical or engineering controls** – enclosures, barriers, extract systems, glove boxes, fume cupboards etc which physically prevent or reduce exposure.
- **Administrative controls** – strategies such as signage, training, etc.
- **Personal Protective Equipment, PPE** – equipment to protect the individual. This must be suitable for the task and conform to relevant British Standards. Training must be given to ensure that the PPE is fitted, used and maintained properly.
- **Hierarchy of control** – The hierarchy of control is a sequence of options which offer you a number of ways to approach the control of hazards. Work your way down the list, and implement the best measure possible for your situation. Notice that the use of protective equipment is the last resort, to be used when all other control measures have been ruled out in the short term. The hierarchy is:
 1. (i) eliminate the hazard
 2. (ii) substitute the hazard with a lesser risk
 3. (iii) isolate the hazard
 4. (iv) use engineering controls
 5. (v) use administrative controls
 6. (vi) use personal protective equipment
- **Maintenance** – Maintenance operations on equipment may increase the likelihood of exposure to hazardous substances. This must be considered in the assessment.
- **Disposal procedures** – Users of hazardous materials must ensure they are disposed of safely in accordance with relevant law and University policy http://www.southampton.ac.uk/estates/services/wasterecycling/waste_atoz.html.
- **Emergency arrangements** – The assessment shall consider not only the routine use of hazardous materials, but also any special arrangements in the event of a fire, spillage, uncontrolled release (vapour, gas) and failure of any critical control system such as fume cupboards.
- **Health surveillance** – Periodic screening of a defined user group for a specific disease or for biological marker for a disease.

<table>
<thead>
<tr>
<th>Irritant</th>
<th>Corrosive</th>
<th>Harmful</th>
<th>Toxic</th>
<th>Very Toxic</th>
<th>Flammable</th>
<th>Highly Flammable</th>
<th>Oxidising</th>
<th>Explosive</th>
<th>Dangerous for the Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xi</td>
<td>C</td>
<td>Xn</td>
<td>T</td>
<td>T+</td>
<td>F</td>
<td>F</td>
<td>O</td>
<td>E</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSE Eye Test Application - Employee Details

Authorisation from Line Manager must be approved before voucher can be issued

Title: ____________________________

Full Name: ____________________________

Staff ID Number: ____________________________ Male □ Female □ (select as appropriate)

Have you:
- Completed on-line DSE assessment? □
- Had a DSE workstation assessment? □

Please note that this is a requirement prior to obtaining an eye test voucher. Certificate/Assessment must be attached to the email which appears when form is submitted at end.

Faculty/PS: ____________________________

Academic/PS Unit: ____________________________

Work Address: ____________________________

Email address: ____________________________

Work telephone extension: ____________________________

*SubProject Code: ____________________________ * denotes required fields

*Approved by Budget Holder? Yes □ Approval must be obtained before submitting this form.

*Budget Holder’s name: ____________________________

*Budget Holder’s telephone extension: ____________________________

*Please confirm that you are attaching your DSE online Training Certificate or your DSE Risk Assessment

Submit Form

(an email window will open addressed to Safety & Occupational Health. Your application form will already be attached; please attach your DSE Certificate or DSE Risk Assessment before sending)

OR

Please complete and return to:
Safety & Occupational Health, M48
26 University Road, Highfield, Southampton, SO17 1BJ

October 2012
1. About you

Name:
Job Title:
School/Service:
Contacts: Tel: _______________ Mobile: _______________ Email: __
Office/Room number (or location of your post tray if you do not have a fixed locus for working):

Brief description of duties:
Some examples might include:
- Teaching/learning activities *(please note whether these include laboratory work, studio work, field trips or other activities which are not just concerned with giving/attending “a routine lecture or seminar”)*.
- Office-based duties
- Technical support
- Customer Service activities
- Domestic support

Do you already have an IEP/PEEP in place? Delete as appropriate Yes No
If yes:

Is your PEEP up to date? Yes No
Please attach a photocopy to this questionnaire.

Does your existing PEEP involve: Delete as appropriate
Special evacuation equipment (e.g. an Evac+Chair)? Yes No
A human assistant (please give their name):
Are you always in easy contact with the person identified as your assistant? Yes No
How? __

2. About the locations and building(s) where you work

The **main** building in which you are expected to work is:

Name of building:
Building number:
Campus:
Area/level of building:

Other buildings/campuses where you regularly/occasionally work:

Name of building:
Building number:
Campus:
Area/level of building:
How frequently (approximately) will you be likely to be working in this other area?
\[\text{[] } \times \text{daily} \quad \text{[] } \times \text{weekly} \quad \text{[] } \times \text{monthly} \quad \text{[] } \times \text{per annum} \]

Name of building:
Building number:
Campus:
Area/level of building:
How frequently (approximately) will you be likely to be working in this other area?
\[\text{[] } \times \text{daily} \quad \text{[] } \times \text{weekly} \quad \text{[] } \times \text{monthly} \quad \text{[] } \times \text{per annum} \]

Name of building:
Building number:
Campus:
Area/level of building:
How frequently (approximately) will you be likely to be working in this other area?
\[\text{[] } \times \text{daily} \quad \text{[] } \times \text{weekly} \quad \text{[] } \times \text{monthly} \quad \text{[] } \times \text{per annum} \]

Please complete the above section for each building in which you regularly have to work – or if you work across one or more entire campuses, please complete one section per campus.

This document is available in electronic format on request to (Health & Safety Office) to facilitate the replication of the building section as many times as required.
3. About your mobility impairment

Please tick (in black ink) the appropriate box

3a. Are you a wheelchair user?

Never ☐ Occasionally ☐ Regularly ☐

Most days ☐ Only outdoors ☐ Permanently ☐

If 'never', please go straight to questions 3l below. Otherwise, complete questions 3b – 3k.

3b. Does your wheelchair carry any life support equipment?

Yes – including oxygen ☐ Yes – not including oxygen ☐ No ☐

3c. Are you able to move around indoors without your chair?

Not at all ☐ With other mobility aid(s) ☐

Sometimes ☐ Usually ☐

3d. Is your usual wheelchair:

Manual (propelled by you) ☐

Manual (pushed by helper) ☐

A powerchair/scooter (usually used outdoors or for longer distances in large buildings) ☐

3e. Do you sometimes need a different chair from your usual one?

Please indicate which type by ticking appropriate box:

Manual (propelled by you) ☐ Manual (pushed by helper) ☐

A powerchair/scooter (usually used outdoors or for longer distances in large buildings) ☐

Approximately how frequently would you expect to use an alternative chair?

3f. Are you usually able to transfer from your wheelchair:

Without any assistance ☐

With minimal assistance from another person (self transfer) (i.e. not including lifting or ‘manual handling’) ☐

With human assistance (including some limited lifting/handling) ☐

Only with use of a hoist/other equipment ☐

3g. Are there likely to be any times when you are not able, or less able, to self transfer?

Yes ☐ (please give an indication of the frequency)

No ☐
If applicable, please complete the next question for each of the buildings/campuses in which you will be working.

Please tick (in black ink) the appropriate box

3h

Are you usually able to get down stairs and out of the emergency exits safely in an emergency?

Yes – unaided, completely independent

Yes – with minimal human support (e.g. to help balance, no lifting or ‘manual handling’)

Yes – with substantial human assistance (including some physical support)

Yes – with appropriate specialist equipment (e.g. Evac+Chair) and trained assistance

Not at all

Information on Evac+Chairs (which involve no lifting) and other specialist equipment is available from the Health & Safety Office on request and demonstrations can be arranged.

3i

Are you willing and able to move down stairs independently of your wheelchair in an emergency?

Yes

Possibly, depending on circumstances

Note: The University will not ask people with mobility impairments to move downstairs unassisted in an emergency situation (e.g. by ‘crawling’), including practice alarms. However, we recognise that some individuals may prefer that option to other possible means of egress. If you are able and willing to do this, the question gives you the opportunity to indicate this preference.

If applicable, circumstances:

Yes – after training

Yes – have used one before

No

3j

Are you willing to learn to use an Evac+Chair (with assistance)?

This equipment is suitable only for those who can self-transfer or who have a permanent assistant (i.e. someone with them at all times) and the chair does NOT require the assistant to do any lifting, unlike a ‘carry chair’.

Yes – after training

Yes – have used one before

No

3k

Are you able to open fire doors in order to pass through them, given that in some areas those doors close automatically (e.g. in corridors) when the emergency alarm goes off?

Yes – always

Some doors are too heavy

Not at all

If you are NOT a regular wheelchair user -

Do you usually use any other mobility aids?

- Crutches
- Stick or cane
- Walking frame
- Scooter for outdoors and longer distances

Do you use such aids:

- Daily
- Some days each week
- Occasionally
- Rarely

Your existing knowledge of the University’s emergency egress arrangements for the building in which you work regularly:

4a. Are you aware of the emergency egress procedures in place for the main building in which you work?

- Yes
- No

4b. Are you aware of the emergency egress procedures in place for the OTHER buildings/campuses in which you work?

- Yes
- No

Please identify those buildings/campuses for which you are unaware of the procedures:

4c. Do you have a copy of the emergency egress procedures?

- Yes
- No
- Yes for some buildings, not for others

Please identify those buildings/campuses for which you would like a copy of the procedures:

4d. Would you like a copy of the procedures in an ‘alternative format’?

- Yes
- No

If ‘YES’, please indicate which format you prefer:

- Electronic copy
- Braille
- Audiotape
- BSL
- On video

Other format, please state: __________________________

Note: enlarged font copies can be produced from electronic copy in any size required.
Are you familiar with the location of ‘refuge’ spaces in your building(s)?
Yes - in all buildings [] Yes - in main building [] No []

For which building would you like refuge point information:

In an emergency, if you were unable to get out for some reason, could you contact the people in charge of evacuating the building(s) in which you work to let them know your location?
Yes [] No [] Not sure []

Are there any specific features of the building(s) in which you work which would create egress difficulties for you in an emergency?
For example: are there any places where a fairly small adjustment (such as a creation of a ramp) would make a difference?

Additional information
Are there any issues or concerns which have not been mentioned in this document so far?
Yes [] No []
If yes, please indicate below giving as much detail as possible (please add additional sheets if required).

Thank you for taking the time to complete this questionnaire.

Please pass it to your Head of School/Service. S/he will use it to inform the first draft of the PEEPs, which will be returned to you for comment.

The information you have provided will help us to establish what your needs are and what adjustments may need to be made to the buildings in which you work.

REMEMBER the problem belongs to the University and the building(s) in which you work – YOU are not a “safety risk”.

Summary of Emergency Egress requirements for:

Name:
Job Title:
School/Service:
Contacts:
 Tel:
 Mobile:
 Email:
Office/Room number (or location of your post tray if you do not have a fixed locus for working):

<table>
<thead>
<tr>
<th>Arrangement identified</th>
<th>Person with disability</th>
<th>School/Service Safety Officer</th>
<th>Head of School/Service</th>
<th>Health & Safety Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuation with all others, no special arrangements or training required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evacuation immediately after others have cleared the level of the building, no assistance or special equipment required. PEEP to specify staged evacuation (i.e. refuge point then egress once others have cleared).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require additional evacuation route training but otherwise can egress unaided. PEEP to specify training requirement and frequency of refresher training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can evacuate from upper floors with minor assistance (e.g. help to maintain balance or assistance with opening fire doors). PEEP to identify assistant, means of contact and staged evacuation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can evacuate from upper floors with significant assistance (e.g. move to refuge; self-transfer to Evac+Chair; assistant use chair). PEEP to identify assistant, means of contact and staged evacuation plus frequency of refresher training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has a permanent assistant who can help with egress using Evac+Chair (may include minor assistance with transfer to chair). PEEP to identify assistant, means of contact and staged evacuation plus frequency of refresher training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrangement identified</td>
<td>Person with disability</td>
<td>School/Service Safety Officer</td>
<td>Head of School/Service</td>
<td>Health & Safety Office</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>The person is unable to use stairs or an Evac+Chair, (e.g. cannot self-transfer or has life support equipment in wheelchair). THIS PERSON MAY NOT GO TO LEVELS ABOVE GROUND FLOOR UNLESS THERE IS A HORIZONTAL EGRESS ARRANGEMENT FOR THAT LEVEL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pro-forma for Recording PEEPs

Personal Emergency Egress Plan (PEEP) for:

Name: __

School/Professional Service: __

How have the emergency evacuation procedures been notified?
(e.g. in Braille, on tape, in print?). Please indicate which format:

- Electronic copy □
- Braille □
- Audiotape □
- BSL □
- On video □
- Other format □ please state: ____________________________

How is warning of an emergency evacuation provided?
(e.g. by existing alarm, pager, visual alarm?)

If anyone is designated to provide assistance in an emergency, please list their names:

List any methods of providing assistance
(e.g. transfer procedures, methods of guidance):

List any equipment provided (e.g. Evac+Chair)

Provide a step-by-step account of the egress procedure from the alarm being raised -
provide a diagram of the escape route where necessary.

How frequently will PEEP be practised?

Who will review this PEEP and at what frequency?

Name of person issuing PEEP

Date of issue

Dates of review:

Signature of reviewer:

OUT OF HOURS WORKING POLICY (FORM A)

FORM A – NOTIFICATION & AUTHORISATION BY HEAD OF FACULTY/HEAD OF PROFESSIONAL SERVICE TO ENTER UNIVERSITY BUILDINGS DURING CLOSURE PERIOD. WHEN COMPLETED TO BE EMAILED AS AN ATTACHMENT TO THE CENTRAL CONTROL ROOM unisecurity@soton.ac.uk.

The Out-of-Hours Policy covers the Closure Period from 11.00pm through to 6.00am the following day and applies to every day of the year, including such as weekends and Public Holidays.

Notification of person requiring entry and timing:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address:</td>
<td></td>
</tr>
<tr>
<td>Faculty:</td>
<td></td>
</tr>
</tbody>
</table>

EITHER*(on a single occasion): delete

Entry required to:

<table>
<thead>
<tr>
<th>From: Date: Time:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>To: Date: Time:</th>
</tr>
</thead>
</table>

OR*(for multiple occasions):

Entry required over a period of 60 days (note not to exceed 92 days/3 months) Commencing from today’s date (date form is submitted).

* delete as applicable

Authorisation by Head of Faculty/Head of Professional Services

I have authorised the foregoing person to undertake out of hours working as shown above. A risk assessment has been carried out and appropriate measures put in place.

I have advised the person that if he/she experiences any security-related difficult or concern, then he/she should stay where he/she is and notify the Central Control Room for assistance on 22811.
OUT OF HOURS WORKING POLICY (FORM B)

FORM B - NOTIFICATION BY STAFF OR STUDENT WITH HEAD OF SCHOOL/HEAD OF PROFESSIONAL SERVICE AUTHORISATION TO ENTER UNIVERSITY BUILDINGS DURING CLOSURE PERIOD. WHEN COMPLETED TO BE EMAILED AS AN ATTACHMENT TO THE CENTRAL CONTROL ROOM unisecurity@soton.ac.uk.

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address:</td>
<td></td>
</tr>
<tr>
<td>I will be working in:</td>
<td>Building:</td>
</tr>
<tr>
<td>From:</td>
<td>Date:</td>
</tr>
<tr>
<td>To:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

I agree to follow health and safety arrangements notified to me by my Head of School/Head of Professional Service (or nominee). I understand that if I experience any security-related difficulty or concern, then I should stay where I am and notify the Central Control room for assistance on 22811.