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Section A

A1. A microwave oven operates by injecting electromagnetic waves with a fre-

quency of 2.45 GHz into the cavity formed by the conducting metal shields

on each face of the oven box. Explain, with the aid of sketches and simple

calculations, why it is generally necessary to rotate the food using a turntable

during operation. [4]

A2. Show that the operator ω̂ ≡ i ∂
∂t when applied to a single frequency complex

wave y(x, t) = a exp i(kx − ωt) correctly yields the angular frequency ω of the

wave. [2]

Explain why the same operator does not give the same result for real sinusoidal

waves y(x, t) = a cos(kx − ωt + φ). [2]

A3. The figure below represents the oscilloscope trace of a signal within a laser light

show. The horizontal scale is microseconds, and the vertical scale is volts.

Deduce which of the following could represent the first four harmonic compo-

nents of the signal, and explain your choice.

a. 36
5π2

(
sinω0t +

√
3

4 sin 2ω0t + 2
9 sin 3ω0t +

√
3

16 sin 4ω0t
)

b. 36
5π2

(
cosω0t +

√
3

2 cos 2ω0t + 2
3 cos 3ω0t +

√
3

4 cos 4ω0t
)

c. 36
5π2

(
sinω0t −

√
3

4 sin 2ω0t + 2
9 sin 3ω0t −

√
3

16 sin 4ω0t
)

d. 36
5π2

(
cosω0t −

√
3

2 cos 2ω0t + 2
3 cos 3ω0t −

√
3

4 cos 4ω0t
)

[4]
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A4. The equation for sound waves through air of density ρ and elastic constant E

may be taken to be
∂2ξ

∂t2 =
E
ρ

∂2ξ

∂x2

where the elastic constant may in turn be written in terms of the air pressure P

and the specific heat ratio γ as E = γP. Given that γ = 1.4 and the density and

pressure at sea level are respectively 1.29 kg m−3 and 1.013×105 Pa, calculate

the speed of sound at sea level and the time taken for the sound of a thunder

clap to travel a kilometre at that altitude. [4]

A5. Given that, in question A4, the density may be written in terms of the molar

mass m and the molar volume V as ρ = m/V , and that the molar volume

is determined at a given pressure and temperature by the ideal gas equation

p V = R T , where R is the molar gas constant, show that the speed of sound

depends only upon the temperature of the atmosphere. [2]

On a thundery summer afternoon the temperature of the atmosphere is found

to decrease with altitude except for a region close to the surface which

is occupied by the cold downdraught from the clouds. Soundings indicate

temperatures of 15 C at ground level, 25 C at 500 m altitude and 0 C at 3500 m.

Indicate with a sketch how refraction will affect the propagation of the thunder

clap through the atmosphere. [2]

TURN OVER
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Section B

B1. What are meant by transverse and longitudinal wave motions? Give an

example of each, and an example of a wave that is neither. [5]

The figure below shows the longitudinal motion of a volume element of an

elastic medium which is displaced (bottom) by ξ(x, t) from its rest position (top).

(a) By considering the extension of the longitudinal element of density ρ,

elasticity E and cross-sectional area A, show that the tension differs from

the tension of the medium at rest by T (x, t) where

T (x, t) = EA
∂ξ

∂x
[2]

(b) Hence, by considering the net force acting upon the element, show that

the wave equation governing its longitudinal motion will be

∂2ξ

∂t2 =
E
ρ

∂2ξ

∂x2 . [2]

Explain, with examples, what are meant by the continuity conditions for wave

motion at the interface between two media. How does a discontinuity in the

characteristics of a medium affect the wave propagating through it? [3]

A ‘tin can telephone’ is made by stretching a length of string between the

bases of two tin cans, as shown below, so that the base of each can acts

as a microphone diaphragm whose motion generates longitudinal waves along

the taut string (and vice-versa for the loudspeaker).
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(i) Assuming that the whole of the can base moves with the same displace-

ment, and that its mass can be neglected, show that the continuity condi-

tions at the air-can-string interface are

ξ1(x0, t) = ξ2(x0, t)

E1 A1
∂ξ1

∂x
(x0, t) = E2 A2

∂ξ2

∂x
(x0, t) ,

where A1 and A2 are the cross-sectional areas of the tin can and the string

respectively and ξ1,2, E1,2 are the wave displacement and medium elasticity

in region 1 (x < x0) and region 2 (x > x0). [3]

(ii) Hence show that for all of the incident sound energy to be transferred to

the string, the cross-sectional areas must satisfy

A1Z1 = A2Z2

where the impedances per unit cross-sectional area, Z1,2, are in each

region given by Z =
√

Eρ. [3]

(iii) Thus suggest the best diameter of tin can to use if you have a piece of

string with a diameter of 1.5 mm, density 125 kg m−3 and elastic modulus

7 × 108 N m−2, assuming air to have a density of 1.29 kg m−3 and elastic

modulus 1.4 × 105 N m−2. [2]

TURN OVER
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B2. (a) Describe what are meant by travelling and standing waves. [2]

(b) Show that travelling waves of the form y(x, t) = f (u), where u = x − c t,

are general solutions for wave systems described by wave equations of

the type
∂2y

∂t2 = A
∂2y

∂x2

where y is the wave displacement at position x and time t. Derive the

relationship between the constants c and A. [4]

(c) Explain what is meant by a boundary condition. Give two examples of

boundary conditions and describe how they affect wave propagation in

everyday or scientific situations. [4]

(d) The Doppler shift of a moving source may be determined by considering

the source to provide a moving boundary condition upon the system in

which the radiated wave propagates. Given that, for a source of sinusoidal

waves of angular frequencyω, moving in the positive x direction with speed

v, the boundary condition may be written as

y(vt, t) = a cosωt ,

show that the specific travelling wave solution will be

f (u) = a cosω
( −u

c − v
)

and thus that

y(x, t) = a cos
( c

c − vωt − ω

c − v x
)
,

and find the frequency shift between the source and the resulting wave. [4]

(e) Hence find the signal which will be measured by a detector a constant

distance L downstream of the source, i.e. at a position x = v t + L. [2]

(f) Explain how such an arrangement could be used to measure the speed
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of water flowing from an acoustic sounder to a nearby microphone, and

suggest suitable values of ω and L if the device is to be used to measure

boat speeds up to 10 m s−1, given that the speed of sound in water is

around 1500 m s−1. [4]

TURN OVER
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B3. Explain the Huygens description of wave propagation, and how it accounts for

the phenomenon of diffraction. [4]

A diode laser may be considered equivalent to an infinitely broad gain medium

that lies behind a mask containing an aperture with the same cross-section as

the gain region of the real device. For a diode laser designed to operate at

wavelengths around 780 nm, the gain region has a rectangular cross-section

measuring 5 µm by 10 µm. Calculate the far-field divergence angle of the laser

beam in the two directions parallel to the axes of the rectangle, stating clearly

any assumptions or approximations made. [4]

To be used in a practical device, the diverging laser beam is collimated using

a small convex lens whose focus is positioned around the output face of the

diode laser. If the lens has a focal length of 10 mm, calculate (a) the minimum

diameter of the lens, if it is to pass all of the central diffraction order, and (b) the

difference in thickness of the lens between its centre and the edge, given that

the refractive index of the lens is 1.53. [4]

To stabilize the diode laser to a single wavelength, a reflective diffraction grating

is used to feed light of the desired wavelength back into the gain region, as

illustrated above. For light with the correct wavelength, the first diffracted

order is reflected back along its incident path, while the zeroth order (ordinary

reflection) provides the output from the combined device.

Show, with the aid of a diagram, that, in this Littrow configuration, the diffraction

grating should be set to an incidence angle θ given by

sin θ =
λ0

2d

where λ0 is the laser wavelength and d is the spacing of the grating rulings. [3]
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Show also that any light with a slightly different wavelength λ = λ0 + δλ will be

returned from the grating at an angle δθ to the incident light, where

δθ ≈ δλ

d cos θ
. [3]

Hence, taking the lens focal length to be 10 mm and the gain region width to

be 5 µm (as above), and assuming the grating incidence angle to be 45◦, find

the detuning δλ for which none of the reflected light will strike the gain region. [2]

TURN OVER
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B4. Explain what is meant by dispersion in wave propagation. Give two examples

of its practical consequences. [4]

The wave functions of quantum particles are described by the Schrödinger

equation

α
∂y

∂t
= β

∂2y

∂x2 + γ y

where y is the quantum wave function at position x and time t and the constants

α, β and γ are equal to i h̄, −h̄2/2m and the potential energy V respectively,

where h̄ is Planck’s constant/2π and m the mass of the particle.

(a) Demonstrate that travelling waves of the form y(x, t) = f (u), where

u = x − c t, are not general solutions to the Schrödinger wave equation. [4]

(b) Show that, in contrast, single-frequency complex exponential waves of the

form

y(x, t) = y0 exp i(kx − ωt)

are possible solutions. Derive the dispersion relation between ω and k in

terms of h̄, m and V , and deduce the phase velocity ω/k if V = 0. [4]

An interesting class of solutions to the Schrödinger equation are Gaussian

wavepackets of the form

y(x, t) =

√
π

d + at
exp i(kx − ωt) exp− (x − v t)2

4(d + at)

where a = β/α and the constant d defines the width of the wavepacket at t = 0.

(c) Describe or sketch the shape of the wavepacket at time t = 0, and explain

how it evolves with time. [4]

(d) Show that the wavepacket is indeed a solution to the Schrödinger equation,

and find how the group velocity v depends upon the wavenumber k. [4]

END OF PAPER


